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Abstract. The direct simulation Monte Carlo (DSMC) method takes a stochastic approach to solving the Boltzmann equation, and
is commonly used to model rarefied gas flows. The simulation domain is split into cells, in which computational representative
particles mimic the real flow. Since millions to billions of particles need to be tracked, these models need to be both accurate and
computationally efficient. Even with high-fidelity collision models, the overall accuracy of the DSMC outcome strongly depends
on its ability to predict the correct number of collision events per simulated time step, i.e. the collision frequency. The two most
popular approaches for this purpose are the no-time-counter (NTC) and majorant collision frequency (MCF) schemes. While the
NTC scheme is designed to reproduce the average collision time for a sufficiently large sample sizes, the MCF scheme has the
advantage of reproducing the exact Poisson distribution of collision time as well as the mean collision time with a reduced sample
size. Both schemes have linear complexity of O(N), with N being the number of particles. In this work, we implement the MCF
scheme in SPARTA, an open source DSMC solver. A series of numerical tests are performed to illustrate the efficiency and accuracy
of both the schemes. Various benchmarks highlighting unsteady, compression, and expansion problems are studied.

INTRODUCTION

The direct simulation Monte Carlo [1] (DSMC) method is a probabilistic technique for modeling rarefied gas flows.
The simulation domain is discretized and computational particles are employed to reproduce solve the Boltzmann
equation [2]. The algorithm then iterates until the specific simulation time is complete. One key component throughout
the iteration process is the collision step, which relies on phenomenological models and collision schemes. Elastic
scattering, internal energy relaxation, chemistry, and gas surface interactions are typical molecular processes that
are described by the phenomenological models for every collision. Computationally efficient models are required to
successfully reproduce macroscopic rates obtained from experimental results. Even when efficient and high fidelity
collision models are used, the DSMC calculation will only be accurate with collision schemes that reproduce the
correct collision frequency.

Two popular schemes for reproducing the collision frequency are no time counter [1] (NTC), and majorant
collision frequency [3] (MCF). NTC was introduced by Bird, and modern solvers like SPARTA [4] use it. MCF was
introduced by Ivanov, and is mainly used in SMILE [5]. Previously, both schemes were compared by Venkattraman
et al [6]. MCF was implementated in Bird’s DSMC0 (0-D) code, and it was determined that MCF reproduces the
Poisson distribution (Equation 1) better than NTC given the same conditions. However, it is still unclear, from a
practical perspective, if it is beneficial to capture the distribution function of time between collisions, or if the mean
collision time (τ) is sufficient.

f (tc) =
1
τ

exp(−
tc
τ

) (1)

The goal of this work is to implement the MCF scheme in SPARTA and compare it with the NTC scheme.
Besides verifying the MCF-SPARTA implementation for 0D cases [6], we also compare NTC and MCF schemes for
unsteady and multidimensional nonreactive flows. The remainder of this paper is organized as follows. First, both
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collision schemes are explained. Then several benchmark cases are discussed and the results of both MCF and NTC
are compared.

BACKGROUND

One of the earliest collision schemes was the time counter (TC) scheme [7], where a collision pair is chosen, and
the collision is accepted with the probability ((σT cr)/(σT cr)max), where σT is the total collision cross section for the
collision pair, and cr is the relative speed of the collision pair. A time increment (∆tc) for the collision is computed as
shown in Equation 2.

∆tc =
2V

NN̄FNUMσT cr
(2)

where V is the cell volume, N is the number of simulators in the collision cell, N̄ is its time average, and FNUM
is the ratio of real molecules to computational molecules. If the collision is accepted, the post-collision velocities
and internal energies are computed. This step is repeated until

∑
tc ≥ ∆t. This algorithm is computationally efficient

with a O(N) complexity, but the collision scheme fails to reproduce the correct collision frequency under extreme
non-equilibrium conditions [8, 9].

Both NTC and MCF have a complexity of O(N) and can reproduce the theoretical mean collision frequency (ν =

1/τ) for typical numbers of DSMC simulated particles/cell (i.e. ∼20), even in extreme non-equilibrium conditions.
However, these schemes have a very important difference. With NTC, the solver calculates the number of collisions
it will attempt, and then increments until it has tested all possible collisions. With MCF, the algorithm computes the
majorant frequency within the collision cell (which is larger than the actual collision frequency), and uses that to
compute a secondary timestep δt. Collisions are tested until the sum of the secondary timesteps is greater than the
overall simulation timestep. Although NTC reproduces the mean number of collisions, only MCF samples the time
between collision from the exact Poisson distribution (Equation 1). Both schemes are summarized in Figure 1.

FIGURE 1. Comparison of NTC and MCF collision schemes

Figure 2 shows that under equilibrium conditions, over 85% of all collisions occur within the first 2tc/τ, and
about 98% of collisions occur within 4tc/τ. This means that the collision scheme needs to perform well in this time
period.
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FIGURE 2. Theoretical/Poisson distribution of time between collisions for an equilibrium gas.

Collision Time Sampling
NTC and MCF schemes have a major conceptual difference that should be considered when sampling/binning the
time between collisions (Figure 3). In NTC, the minimum binning interval is the simulation timestep (∆t), as that is
the minimum time resolution for the collision scheme. Any collision that occurs can only be assigned to that timestep,
not an intermediate time. However, MCF has a much smaller time resolution as it calculates a second timestep (δt).
This means that the time associated with the collision isn’t the timestep itself, but some intermediate time. This means
that any binning interval, even one much smaller than the timestep, is suitable for MCF.

FIGURE 3. Difference in time resolution of NTC and MCF result in different binning. Even though the red and blue particles
collide at different times, NTC sees them as colliding at the same time because they collide in the same timestep.

RESULTS

0-D Steady Case
A 0-D homogeneous and adiabatic system was used to verify the MCF implementation, as was done in Venkattraman
et al [6]. The time between accepted collisions for MCF and NTC schemes is sampled at a minimum bin size of 1µs
and compared to the Poisson distribution. The numerical and VHS parameters are shown in Table 1, where n is the
gas number density, T is the gas temperature, m is the molecular mass, τT H is the theoretical mean collision time, ω
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is the viscosity coefficient, and α is the VSS scattering coefficient. ∆x is the cell size, which was chosen to be about
1/10th of the mean free path.

Note that the total number of particles (NP) was kept at 10,000, and the cell size was held at 1 mm for all cases.
To vary the number of particles per cell, the domain size was changed in the x-direction. For two particles per cell, the
domain was 5.0 m long, while for 100 particles per cell, the domain was 0.1 m long. We also increased the timestep
to see if MCF can reproduce the Poisson distribution with the timestep equal to the mean collision time.

TABLE 1. Investigated numerical and
VHS conditions

n [m−3] 1.4x1020

T [K] 273
m [kg] 5.0x1026

Np [-]∗ 10,000
∆xcell [mm]∗ 1
Simulated time [ms] 50
τT H [µs] 23.5
Tre f [K] 273
dre f [m] 4x10−10

ω [-] 1
α [-] 1

∗ Domain size is adjusted to keep Np
and ∆xcell constant.

The simulation ran until around 10 million collisions were accepted (20 million samples). First, the mean colli-
sion frequency was sampled from DSMC and compared to the theoretical collision frequency, as shown in Table 2.
We can see that both schemes reproduce the mean collision frequency within 0.1%, even for very large timesteps.

TABLE 2. Equilibrium mean collision time for both MCF and NTC. Different timesteps and particles per
cell (ppc) are considered

MCF NTC
ppc ∆t/τT H τ/τT H ∆t/τT H τ/τT H ∆t/τT H τ/τT H ∆t/τT H τ/τT H

2 1/10 0.9995 1 0.9999 1/10 0.9995 1 0.9998
8 1/10 0.9995 1 0.9994 1/10 0.9995 1 0.9996
20 1/10 0.9995 1 0.9993 1/10 0.9995 1 0.9997
100 1/10 0.9995 1 0.9998 1/10 0.9995 1 0.9998

The time between accepted collisions was sampled, and a probability distribution function (PDF) was constructed
of 1 µs bins. Figure 4 shows a comparison of the ratio of the PDF calculated from DSMC to the theoretical Poisson
distribution for different number of particles and timesteps for MCF and NTC. We can see that for a reasonable
timestep of ∆t/τ = 10, MCF reproduces the Poisson distribution better than NTC with eight or more particles per cell.
Even with a very large timestep however, MCF can still reproduce the Poisson distribution well with 20 particles per
cell. Note that NTC effectively has fewer bins for a timestep that is larger than the bin size, as discussed in Figure 3.

We can conclude that MCF can reproduce the distribution of collisions well even for large timesteps. Next, we
look to investigate certain applications where MCF might be computationally beneficial, as it might allow for fewer
particles per cell or a larger timestep.

1D Oscillatory Couette Flow
A 1-D oscillatory coutte flow [10] was chosen to compare the computational performance of NTC and MCF for
unsteady flows. We varied the timestep and number of particles per cell. The left wall remained stationary, while the
right wall had a sinusoidal velocity profile, as shown in Figure 5.

The period of oscillation (tosc) was 5 ms. The gas was Argon, and the numerical conditions are shown in Table 3.
To evaluate both NTC and MCF, we varied the timestep and number of particles per cell. Two timesteps were tested:
∆t = τT H/10, and ∆t = τT H . Although 20 particles per cell is the rule of thumb for DSMC simulations, that was not
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FIGURE 4. Comparison of PDF of time between collisions for NTC and MCF with a varrying timestep and number of particles
per cell. MCF reproduces the PDF well, even with a large timestep.

FIGURE 5. Boundary conditions for 1D Oscillatory Couette flow case

sufficient here. As previously verified [10], one needs at least 1,000 particles per cell to obtain present solutions with
an acceptable level of statistical scatter. The two cases for particles per cell tested were 1,000 and 10,000.

For all test cases, we wanted to keep the same sample size, meaning for the smaller timestep (τT H/10), we had
less particles per cell (1,000), and for the larger timestep (τT H), we had more particles per cell (10,000). However, we
needed a reference case to compare the solutions to. The reference solution was the case with the most samples: the
smaller timestep (τT H/10) with more particles per cell (10,000). With this being a Couette flow, the solution of interest
was the velocity profile. The results are shown in Figure 6. We can see that both the MCF and NTC solutions appear
very similar for all cases. For a set of timestep and number of particles/cell, both NTC and MCF capture the same
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TABLE 3. Investigated numerical
and VHS conditions for unsteady
couette flow

n [m−3] 1.68x1020

T [K] 273
m [kg] 6.634x10−26

tosc [ms] 5
∆xcell [µm]
Fnum 6.72x109

τT H [µs] 2.09
Tre f [K] 273
dre f [m] 4.11x10−10

ω [-] 0.81
α [-] 1.4
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FIGURE 6. Velocity profiles for unsteady Couette flow case. Both MCF and NTC have similar results.

evolution of the velocity profile. Neither scheme seems beneficial here.

2D Compression Flow

Comparing MCF and NTC in a nonreacting hypersonic (Mach 10) flow around a circle is of interest due to the
compressive nature of the flow in the shockwave. The numerical conditions are shown in Table 4, where X and Y are
the dimensions of the domain. Three cases were run with different timesteps: ∆t/τT H ∼ 1/500, ∆t/τT H ∼ 1/10, and
∆t/τT H ∼ 1. The Knudsen number was 0.3. The freestream consisted of only N2 with a velocity of 3526 m/s. The
results are shown in Figure 7. It is clear that even for unrealistic timesteps, the flowfields for MCF and NTC look
nearly identical. The force results are also shown in Table 5. There are differences in the forces for different timesteps,
but they are nearly identical when comparing MCF and NTC for the same timestep. For this case, NTC ran about 15%
faster than MCF, but that difference could be due to innefficiencies in the MCF implementations.
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TABLE 4. Investigated numeri-
cal and VHS conditions for 2D
flow around a circle

n [m−3] 1.0x1020

X [m] 1
Y [m] 0.5
T [K] 300
m [kg] 4.65x10−26

∆xcell [mm] 1
Fnum 1x1014

τT H [µs] 5.0x10−5

Tre f [K] 273
dre f [m] 4.07x10−10

ω [-] 0.74
α [-] 1.6

TABLE 5. Force results in the x-
direction for all cases

NTC MCF
τT H ∼ 1 2.769 2.770
τT H ∼ 1/10 2.409 2.413
τT H ∼ 1/500 2.367 2.366

FIGURE 7. Hypersonic flow over a cylinder: Temperature and Velocity flowfields. Both MCF and NTC produce nearly identical
flowfields.

2D Expansion Flow
The last case of interest was a expanding plume problem. This case was of interest as the flow density can vary by
orders of magnitude. The gas composition was 96% He and 4% N2O. The stagnation pressure is 500 mbar, and the
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channel opening was 0.25 mm, meaning the Knudsen number is 5.85x10−6. The number density flowfield is shown in
Figure 8. The original hypothesis was with the rapid variation in density, MCF and NTC would show differences in
regions of low density. However, the results are nearly identical.

TABLE 6. Investigated numerical and VHS conditions for expand-
ing plume flow

n [m−3] 2.91x1027 ∆t [s] 1x10−11

X [mm] 25 Tre f [K] 273
Y [mm] 25.025 dre f ,N2O [m] 5.56x10−10

T [K] 298 dre f ,He [m] 2.30x10−10

mN2O [kg] 7.31x10−26 ωN2O [-] 0.94
mHe [kg] 0.665x10−26 ωHe [-] 0.66
∆xcell [µm] 25 αN2O [-] 1.57
Fnum 1.8x1017 αHe [-] 1.35
n [m−3] 2.91x1027 ∆t [s] 1x10−11

X [mm] 25 Tre f [K] 273
Y [mm] 25.025 dre f ,N2O [m] 5.56x10−10

T [K] 298 dre f ,He [m] 2.30x10−10

mN2O [kg] 7.31x10−26 ωN2O [-] 0.94
mHe [kg] 0.665x10−26 ωHe [-] 0.66
∆xcell [µm] 25 αN2O [-] 1.57
Fnum 1.8x1017 αHe [-] 1.35

FIGURE 8. Expansion flow: number density flowfield. Both schemes produce similar results.

CONCLUDING REMARKS

Majorant collision frequency was implemented in DSMC-SPARTA. The 0-D test cases showed that although both
NTC and MCF reproduce the mean collision frequency, NTC does not reproduce the Poisson distribution for time
between collisions very well. MCF, on the other hand, can reproduce Poisson distribution well, even for unrealistically
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large DSMC timesteps. Despite this, there appears to be no application where MCF is computationally beneficial, as
the three considered benchmark cases revealed no apparent differences. The question still remains, is there a case
where reproducing the mean collision frequency is not sufficient, and one needs to reproduce the Poisson distribution
of time between collisions? This work can be extended to look at reactive problems.
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