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Abstract—This paper presents GPU parallelization for a
computational fluid dynamics solver which works on a mesh
consisting of polyhedral cells, where each cell has an arbitrary
number of faces and each face has an arbitrary number of
vertices. The parallelization is achieved using NVIDIAs com-
pute unified device architecture (CUDA). The developed code
specifically targets performance improvement on NVIDIA-
Tesla accelerator GPUs. The implementation has been car-
ried out in a general purpose open-source CFD framework
namely OpenFOAM which is capable of solving arbitrary
flow problems involving complex geometries with polyhedral
unstructured grids. The present work considers incompressible
flow simulations, where solving pressure Poisson equation is the
most computationally expensive step. The Poisson equation is
solved using conjugate gradient method preconditioned by alge-
braic multigrid method. This part of the solver is outsourced
by OpenFOAM to GPU. The GPU pressure Poisson solver
acceleration is determined with respect to OpenFOAM serial
version (single cpu core) and MPI parallelized version (8 cpu
cores). The GPU solver acceleration was tested by simulating a
standard benchmark test case called lid driven cavity flow for
different grid sizes. The current GPU based solver has shown
a speedup of approximately 16× when compared to single cpu
core and 3.3 × when compared to OpenFOAM MPI version
using 8 cpu cores, for a grid size of 5 million cells.

Keywords-GPU computing; Computational Fluid Dynam-
ics; preconditioned conjugate gradient methods; OpenFOAM
framework; CUDA;

I. INTRODUCTION

Graphics Processing Units (GPU) have emerged as pro-
grammable devices instead of just hardwired graphics accel-
erators. Due to higher computing to cost (C/C) ratio, GPUs
have now become cost-effective scalable co-processors and
hence an integral part of high performance computing
(HPC). The massive number of GPU threads and high
memory bandwidth is readily employed to accelerate data
computations in numerous fields such as Computational
Fluid Dynamics (CFD) [1], [2], Linear Algebra [3], [4],
Computer Vision, Computational Biology, etc.

However, use of GPUs for computational tasks is by
no means a new idea. On early GPUs having low C/C
ratio, particle based fluid flow computation methods such

as Lattice-Boltzmann, have obtained significant speedups
[5]. Various other methods of solving PDEs such as Finite-
Difference Finite-Time (FDFT) [6], Finite Element (FEM)
[7], Finite Volume (FVM) [8]–[10], Discrete Galerkin (DG)
[11], etc have been extensively studied for tackling numerous
continuum mechanics problems on GPUs.

Computational Fluid Dynamics, a branch of continuum
mechanics, emphasizes on simulating fluid flows, including
compressible, incompressible, and multiphase, as well as
flows involving further physics such as chemical reactions.
On complex geometries, flow computations demand very
high computational resources and hence the simulations are
usually carried on HPC systems. Within the continuum re-
gion (see [12]–[14]), Navier-Stokes-Fourier (NSF) equations
govern the fluid flows.

In case of incompressible fluids, NSF equations are used
to solve the velocity-pressure field. A three step process (see
Section III) i.e Predictor, Pressure Poisson, and Corrector,
is used to compute the flow solution [12]. Solving pressure
Poisson equations consumes most of the computing time
in Navier-Stokes simulations [15]. More than an order of
magnitude of speedup in computation time can be achieved
by accelerating solvers for this step.

A. The Collocated Polyhedral grid problem
In CFD, the spatial domain is divided into a number

of contiguous control volumes or cells. On meshes of
polyhedral cells, each with an arbitrary number of faces,
each face has an arbitrary number of vertices. In general,
the number of neighboring cells can vary from cell to cell.
The cell connectivity is such that a cell face is either internal
and intersects two cells only, or comprises part of an external
boundary and belongs to a single cell only [16]–[20]. The
mesh is not necessarily aligned with the co-ordinate system
as well.

In such a collocated grid system, the values of a physical
property (Example: pressure), is defined at each cell-center p
and its value is dependent on the values of its neighborhood
N(p). Value at p is given by the sum of the values at



cell-centers in N(p) scaled by predefined constants. The
constants depend on the distance between the cell-centers
as shown in Fig 1 (adapted from [18], [19]). The value v(p)
at p is given by

v(p) =
∑
qεN(p)

apqv(p),
∑
qεN(p)

apq < 1 (1)

where apq is the scaling factor.
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Figure 1: Finite Volume Discretization for collocated mesh
with polyhedral cells, each with arbitrary number of faces,
and each face with arbitrary number of vertices.

The objective is to calculate v(p) for all cell-centers (p) in
the computational domain. The problem reduces to solving
large set of sparse linear equations of the form

[A]mxn {x}nx1 = {b}mx1 (2)

where [A]mxn is the matrix of dimensions (m x n) which has
to be inverted and multiplied with the known source vector
{b}mx1 to obtain the solution {x}nx1. The typical size of
the matrix considered in the current work is in the order of
millions which makes it a computational intensive and time
consuming task.

B. CUDA

Compute Unified Device Architecture (CUDA) presents
an application programming interface that gives direct access
to the GPU’s virtual instruction set and parallel computa-
tional elements, for the execution of compute kernels. An
efficient sparse linear iterative solver for system of equations
such as Eq. 2, can be created using CUDA kernels. The
pressure Poisson equation, as stated previously, is the most
time consuming part of the entire solver. Solution of the
pressure Poisson equation requires solving linear system
of equations. The involved sparse matrix computations are
performed on GPU by implementing CUDA kernels. Here
the sparse matrix [A] is generated for a initial value flow
problem for a considered computational domain using Open-
FOAM.

C. Open-Source CFD Framework: OpenFOAM

The OpenFOAMr [16] (Open Field Operation and Ma-
nipulation) CFD Toolbox is an open source CFD library
which provides an interface for solving complex fluid flow
problems on arbitrary collocated polyhedral grids. Primarily
written in C++ [21], it makes use of C++ templates, function
and operator overloading [16], so that the top-level syntax
of the code as close as possible to conventional mathemat-
ical notation for tensors and partial differential equations.
Numerous discretization, interpolation, and reconstruction
schemes along with iterative solvers such as Gauss-Seidel
are integrated together in the form of OpenFOAM frame-
work.

OpenFOAM supports MPI parallelization on host using
the well known method of domain decomposition. However,
there is no inbuilt support for dihybrid (GPU/CPU) solvers
which can leverage the capabilities of both host (CPU) and
the device (GPU). The present work focuses on integrating
GPU computing with OpenFOAM.

D. Related Work

The efficient iterative solvers on an arbitrary polyhedral
grid using GPUs for OpenFOAM framework have been
less studied in the past. Although there are several works
in which GPUs are used to solve problems on struc-
tured/unstructured grids [8], [22]–[26], the usability of these
solvers is limited to problems with simple geometry.

The multigrid methods, also known to be convergence ac-
celerators, have received moderate attention in the past, but
mostly on structured grid [8], [27] and few on unstructured
grids [1], [24], [25]. Considerable work has been done on
parallelizing Algebraic Multi-grid (AMG) solvers [9], [10],
[26] which includes implementing various parallel coarsen-
ing and smoothing techniques on parallel computers. But,
again the usability of these solvers is limited to problems
with simple geometry.

The present work was done as a part of the vision of in-
tegrating a family of GPU parallelized iterative solvers with
a family of Open-Source CFD solvers (provided as a part
of OpenFOAM). The developed solver is intended to solve
arbitrary fluid flow problems (incompressible, compressible,
or multiphase) on arbitrary 2D/3D complex geometries
represented by polyhedral unstructured grids. Our imple-
mentation works for arbitrary 2D/3D structured/unstructured
grids. Since, the CUDA and OpenFOAM framework are
freely available and widely used, the implementations are
of interest to large number of CFD/OpenFOAM users.

In this work, the contribution is three folds: (a) efficient in-
tegration of GPU based parallel iterative solvers on arbitrary
collocated polyhedral meshes, (b) GPU aware algorithm for
improved performance, and (c) Benchmarking.



E. Paper Organization

A brief overview of GPU architecture and CUDA is given
in section II. In section III, the OpenFOAM computation
model is discussed. Section IV describes the GPU imple-
mentation details and proposed improvements. Benchmark
test cases & results are discussed in section V. Concluding
remarks are presented in section VI.

II. GPU ARCHITECTURE AND CUDA

In this section a brief overview of GPU architecture
and NVIDIA’s CUDA programming model are presented
with an emphasis on some of the important performance
optimization aspects for efficient GPU implementation.

A GPU consists of a set of streaming multiprocessors
(SM) and each SM contains a number of simple processor
cores called CUDA cores. In CUDA, computational grid is
divided into number of blocks, and each block consists of
several threads. A thread is the basic set of instructions that
is to be executed in a computer code. An SM is designed
to execute several hundred of these threads concurrently,
using their Single Instruction Multiple Threads (SIMT)
architecture i.e each thread executes same set of instructions
(called kernels [28]) but on different data.

The GPU memory is divided into three layers: (1) global
memory, largest and with highest latency and accessible by
CPU and all threads across all blocks, (2) shared memory
or on-chip memory shared by all threads in a thread block
and (3) register memory with lowest latency, and is unique
to each thread. Each thread has access to all three layers of
memory space.

Through the global memory, the matrix [A] (and the asso-
ciated data) to be inverted (Eq. 2) is transferred from CPU
to GPU. Access to global memory data requires hundreds
of clock cycles, and the unnecessary data transfer to and
from global memory should be avoided. For data transfer
from host to device’s global memory wherever necessary,
a library called Nvidia-Thrust is used. Nvidia-Thrust is a
collection of C++ GPU-accelerated algorithms (for example:
sort, scan, transform, reductions) and data-structures.

In order to leverage the capabilities of underlying GPU,
optimization becomes crucial in addition to effective par-
allelization of the code. The optimizations include maxi-
mizing SM utilization, memory and instruction throughput
[28]. Increasing occupancy, and coalesced memory access
significantly improves the performance of the applications.
Scattered memory accesses by threads in a warp (group
of 32 threads) leads to transfer of unused data between
global memory and the cache. Further details on CUDA
optimization can be obtained in [28].

III. OPENFOAM COMPUTING MODEL

Various fluid flows such as compressible, incompressible,
and multiphase, as well as flows involving further physics
such as chemical reactions, can be described by systems of
linked partial differential equations of the form [16]

∂ρQ
∂t

+∇.(ρU ⊗ Q)−∇.(ρφ(∇Q)) = S (3)

where U is the fluid velocity, ρ its density, and Q is any
tensor-valued property of the flow, such as temperature.
These equations involve time derivatives (∂ρQ/∂t), convec-
tive terms (∇.(ρU⊗Q)), diffusive terms (∇.(ρφ(∇Q))), and
source terms S.

A. The Incompressible Navier-Stokes

Let Q be a first order tensor-valued property: fluid-
velocity (Q = {1, U}). With the assumption of constant
fluid density, Eqn. 3 can then be simplified to

∂U

∂t
+∇.(U ⊗ U)−∇.(2νD)) = −1

ρ
∇p (4)

where
D =

1

2
(∇U +∇UT ) (5)

with continuity (mass conservation) equation as

∇.U = 0 (6)

B. Representation of PDEs

In OpenFOAM, the top-level syntax of the code is as
close as possible to conventional mathematical notation for
tensors and partial differential equations. Equation 4 can be
represented as

fvMatrixVector Ueqn
(

fvm::ddt(U)
+fvm::div(phi, U)
-fvm::laplacian(nu, U)

);

solve(Ueqn == − 1

rho
∗fvc::grad(p));

(7)

The top-level syntax of the code as close as possible
to governing differential equation. This is one of the ma-
jor advantages of OpenFOAM, and a key motivation for
developing an efficient GPU parallelized version of the
solvers. Foam enables users to develop reliable and efficient
computational fluid dynamics codes for tackling different
fluid flow situations with ease. The reader is referred to [16],
[18], [29] for details of some of the user implemented solvers
in OpenFOAM.



C. Solution to Incompressible Navier-Stokes

The governing equations have been discretized using finite
volume method. In FVM, the computational domain M is di-
vided into a set of discrete volumes4Vi such that

∑
4Vi =

M and4Vi∩4Vj = ∅ for i 6=j. The fluid-flow equations are
then volume integrated over each individual finite volume
4Vi. Generally, a three step predictor-pressure poisson-
corrector algorithm (For example: PISO [30], SIMPLE [12])
is used for solving incompressible Navier-Stokes Eqns.4–6.
In the PISO algorithm, the pressure-velocity methods are
decoupled and solved iteratively as follows [16], [17]

1) Predictor: An initial guess for the pressure field is
made (or the previous time step pressure solution)
and the momentum equation is solved to a predefined
tolerance to give an approximate velocity field (Eq. 7).

2) Pressure Poisson: The pressure Poisson equation is
then formulated with the divergence of the partial
velocity flux as a source term and solved to give a
new estimate of the pressure field (Eq. 8).

3) Corrector: The corrected pressure field is used in an
explicit correction to the velocity field.

The second step i.e pressure Poisson equation can be math-
ematically expressed as [12]

∇2p =
ρ

4t
∇.U (8)

where 4t is the time step, while other symbols have their
standard meanings as defined previously. Finite volume
discretization of the equation is given by∑

f

∇pf .sf =
ρ

4t
∑
f

Ff (9)

where ∇pf is gradient of pressure at each face of the cell,
sf is the surface area of respective face of the cell and Ff is
the flux through each face of the cell. Using finite-difference
approximations, a set of difference equations can be obtained
that can be described in matrix form as specified by Eq. 2.

The generally used numerical methods to solve such
a system of linear equation are direct methods such as
Gaussian elimination, LU factorization etc., and iterative
methods such as Jacobi method, Gauss-Seidel method and
Conjugate gradient method [12]. For large systems the direct
methods are inefficient whereas iterative methods are more
efficient. The iterative methods obtain the solution {x}
without actually inverting the matrix. These methods are
efficient in terms of both memory and time.

In this work, OpenFOAM uses a highly efficient
method called as algebraic preconditioned conjugate gradi-
ent method for solving the pressure Poisson equation. An
efficient parallelized version of this method is implemented
here using CUDA. The implemented code can be called by

OpenFOAM. The rest of the steps in the solution procedure
are taken care by OpenFOAM. The current implementation
is highly modular & robust, and both GPU and Serial version
of code can be run side-by-side without any recompilation.
The end user can still easily switch between various iterative
methods (For example: Gauss-Seidel, PCG, PBiCG, etc) as
usually done in OpenFOAM i.e using fvSolution dict via
runTimeSelection mechanism [16].

IV. IMPLEMENTATION

In a distributed computing model, only non-zero matrix
entries & their corresponding matrix position are stored in
the memory. There are multiple ways in which the matrix
entries and the corresponding positions can be retrieved
either directly or indirectly from memory. Various storage
formats have their own advantages and disadvantages. For
some of them, the binary operation cost can be costlier
than others. OpenFOAM implements its own sparse matrix
storage format which they call as lduMatrix. Consider the
following example of a simple matrix.

1 2 3 4
5 6 7 8

9 10 11 12
13 14 15 16

 (10)

In lduMatrix format, the given matrix is stored in a 5-array
form, which can be expressed in zero-based indexing format
as:

d : {1, 6, 11, 16} (11)
l : {5, 9, 10, 13, 14, 15} (12)
u : {2, 3, 4, 7, 8, 12} (13)
lA : {0, 0, 0, 1, 1, 2} (14)
uA : {1, 2, 2, 3, 3, 3} (15)

where d corresponds to diagonal entries, u corresponds to
upper-triangular entries, l corresponds to lower-triangular
entries of matrix (10). For entries in u, lA corresponds
to row index and uA corresponds to column index. And
for entries in l, uA corresponds to row index and lA
corresponds to column index. In CFD, while d corresponds
to cell values, l & u corresponds to face-values. Size of d
is equivalent to number of cells i.e nCells, and size of l is
equal to number of faces i.e nFaces.

A. CUDA Implementation

The Conjugate Gradient (CG) method is a very promising
iterative method for solving sparse systems of linear equa-
tions. Preconditioning is used for improving the condition
number of a matrix. Suppose that M is a symmetric,
positive-definite matrix that approximates A, but is easier to
invert. In linear algebra, a symmetric m×m real matrix M
is said to be positive definite if the scalar zTMz is positive



for every non zero column vector z of m real numbers. The
system Ax = b can be solved indirectly by

M−1Ax = M−1b (16)

If the condition number of M−1A is less than A then the
number of iterations required for solving Eq. 16 will be
lesser than the original problem. However, the computational
overhead of applying the preconditioner must not cancel out
the benefit of fewer iterations. To be a valid preconditioner
for CG method, the matrix M−1 should be symmetric and
positive definite. For a matrix of size n, conjugate gradient
method converges in atmost n steps. Usually preconditioning
is necessary to ensure fast convergence. A general precondi-
tioned conjugate gradient algorithm can be obtained at [31],
[32].

Current implementation of PCG algorithm uses LDU
matrix storage format for computation. The following GPU
kernels are used for implementing different steps of PCG
method. It is to be noted that before kernel execution, all
the matrix entries and other data are to be copied from host
memory to device memory. After the completion of GPU
execution, the solution array is to be copied back from device
memory to host memory inorder to execute the rest of the
solution algorithm on CPU.

1) Amul ([A]n×n {x}n×1): Two kernels are used for
implementing the sparse matrix-vector product. One of the
kernels creates as many threads as number of cells in the
computation domain and calculates the product for diagonal
entries. The other kernel creates as many threads as number
of off diagonal entries in upper triangular half of matrix [A],
and calculates the product of off-diagonal entries with the
corresponding column-vector entries.

2) Dot ([x]1×n {y}n×1): The kernel takes the starting
index of each vector and length, creates as many thread as
the number of entries in the vector and calculates the value
at each array index.

3) Sum (
∑

[x]n×1): The kernel creates p blocks, each
block with q threads such that p ∗ q <= n. Each block
computes the sum of elements assigned to it and stores it
in an output vector of length p. This output vector becomes
the input for the next sum kernel call, and the procedure is
recursively followed till the length of output vector equals
unity.

4) sumA (
∑n
j=0 [A]ij): It creates as many threads as

number of cells, and calculates the sum of matrix entries
present in a given row.

5) precondition ([M ]
−1
n×n {r}n×1): Preconditions the

residual vector using matrix M .

B. Algebraic Multi-grid Preconditioning

The standard V-cycle algebraic multi-grid (AMG) algo-
rithm has been used for preconditioning the residual vector

in our present study. The reader is referred to [26], [33], [34]
for details of AMG method. Multigrid methods employ two
interdependent processes namely Smoothing and Coarse-
grid correction. The former involves the application of a
simple iterative method like Jacobi which reduces/smooths
high frequency errors. The latter involves transfer of infor-
mation to a coarser grid through restriction followed by solv-
ing a coarse-grid system of equations and then transferring
information back to the fine grid through interpolation. The
V-cycle algorithm combines these Smoothing and Coarse-
grid correction steps. While the first half of the V-cycle
recursively proceeds from finer to coarser grids, the latter
half recurses from coarser to finer grids. Current AMG
preconditioner uses two iterations of V-cycle algorithm.
Jacobi iterative method has been used for smoothening step.
The hierarchy of grids are created using the standard coars-
ening algorithm [33], which partitions the points into two
disjoint sets. The strength of connection matrix is computed
using the standard symmetric measure i.e an off-diagonal
connection Aij is strong iff |Aij | >= θ ∗

√
|Aii|.|Ajj | and

θ ∈ (0, 5].

V. BENCHMARK TESTS AND RESULTS

Transient incompressible lid-driven cavity flow prob-
lem is solved using currently developed solver. The MPI-
parallelized CPU version of solver is termed as CPU, and
GPU-parallelized solver using custom Cuda kernels (em-
ploying PCG method) is called GPU/Cuda. The given lid-
driven cavity flow problem studies the transfer of momentum
from a medium at rest to a wall moving at a constant
velocity. It is assumed that the temperature within the system
remains constant i.e the energy equation is not solved.

A. Hardware Configuration

Two sets of hardwares are used for evaluating the per-
formance of current GPU/Cuda solver. The first set tests
improvements on lower end GPU architecture Quadro, while
the second tests higher end GPU architecture Tesla-K20m.
All the simulations are done with double precision floating
point values.

1) Configuration A: Serial implementations are run on In-
tel Xeon CPU E5-2620 v3 2.40 GHz. The operating system
used is 64-bit Ubuntu 12.04 LTS. Parallel implementations
of solver are run on the same machine with NVIDIA Quadro
K600 GPU with CUDA driver 7.0 and CUDA runtime 6.5.
The GPU has 192 CUDA cores, 1GB device memory. The
solver has been written in C++ and is compiled using g++
4.8 and nvcc 6.5.12 compiler with third level optimization
flag.

2) Configuration B: Serial implementations are run on
Intel Xeon CPU E5-2650 v2 2.60 GHz. The operating
system used is 64-bit Centos 6.0. Parallel implementations
of solver are run on the same machine with NVIDIA Tesla



K20m GPU with CUDA driver 7.0 and CUDA runtime 6.5.
The GPU has 2496 CUDA cores, 5GB device memory. The
solver has been written in C++ and is compiled using g++
4.8 and nvcc 6.5.12 compiler with third level optimization
flag.

B. Transient Lid-Driven Cavity Flow Problem

Standard benchmark test case of 2D incompressible Lid-
driven cavity flow is considered for checking the efficiency
of GPU-parallelized OpenFOAM code. The unsteady prob-
lem is solved on a square computational domain as shown
in Fig 2. Sample mesh is shown in Fig. 3. The PISO
algorithm (Pressure Implicit with Splitting of Operator)
proposed by Issa [30] is used here for solving the flow
governing equations. The parameters used in the simulation
are presented in Table I. Dirichlet boundary condition for
velocities has been used at all the surfaces (u = 1; v = 0 for
lid and u = 0; v = 0 for all other surfaces) and Neumann
boundary condition for pressure at all surfaces ( ∂p∂n = 0).
Time step used in the simulations is obtained based on
Courant-Friedrichs-Lewy (CFL) condition. For an explicit
time integration scheme it can be defined as

u∆t

∆x
+
v∆t

∆y
≤ 1

where u and v are x-component and y-component of velocity
in a computational cell. For a case with grid size 2250 ×
2250 ( approximately 5 million computational cells), ∆x =
∆y = 4.5 × 10−5. With initial conditions u=1 and v=0,
maximum limit for ∆t can be roughly estimated as 4.5 ×
10−5. However for an implicit scheme like PISO this time
step constraint can be relaxed. Nevertheless a large time
step size may result in numerical inaccuracy and instability
(depending on flow conditions). Hence here time step size
∆t = 5× 10−8 is chosen.

fixedValue (0,0,0) (U )
Zero Gradient (p)

fixedValue (1,0,0) (U )
Zero Gradient (p)

x

y

Figure 2: Numerical setup for 2D lid-driven cavity flow.

Figure 3: Sample mesh for 2D lid driven cavity flow.

Domain (m) Time step (s) Kinematic Viscosity (m2s−1)
0.1 x 0.1 5 x 10−8 0.01

Table I: Initial configuration parameters of lid-driven cavity
flow test case.

1) Validation: Before proceeding to solver performance,
it is required to compare the solution obtained from GPU-
parallelized code against the standard Serial code solution.
We compare the normalized pressure and velocity distribu-
tion along the centerline of computational domain i.e Y =
0.05. Fig. 4 shows the comparison between the solutions
obtained using GPU and serial version of incompressible
laminar transient solver icoFoam. An excellent agreement
is obtained between the two solutions as evident from the
figure.

2) Comparison of Solver Performance: The simulations
are carried out for the mentioned case up to t = 5× 10−4s
on five different grid sizes 5 × 104, 1 × 105, 5 × 105,
1 × 106, and 5 × 106. Speed up obtained with GPU based
solver is presented in Table II. As can be seen from the
table, the acceleration due to GPU parallelization increases
with increase in the size of computational grid. This is
because with larger grid sets, the time required by the
GPU to perform the computations becomes larger than the
time required for data transfer between the host and the
device. Hence, the non-computational overhead decreases
which results in increase of the computational efficiency
of the GPU. However, as number of cells increase beyond
a certain limit i.e 1 × 106, almost all of SMs present get
occupied and the parallel computation overhead becomes
larger. So, the increase in cell count does not increase the
computation speedup. On a mesh consisting of 5 million
cells, the current implementation achieves a speed up of
∼16x on Tesla-K20m, when compared with the serial ver-
sion of code. OpenFOAM solvers can be run on CPU using
MPI communication. Present solver achieves a speedup of
∼4x on Tesla-K20m, when compared with MPI-enabled
OpenFOAM code running on 8 processors. Even on a low
end easily accessible GPU processor like Nvidia Quadro-
K600, the current implementation has achieved a speed up



Number of Cells Total Solve Time (s) Overall Speed up
(Approximate) CPU/1P CPU/8P GPU/Cuda 1P vs GPU 8P vs GPU

5 x 104 64* - 87* 0.73 -
1 x 105 187* - 155* 1.2 -
5 x 105 2450* 403* 653* 3.75 0.61

+1 x 106 5131+ 830+ 318+ 16.13 2.61
+5 x 106 26075+ 5561+ 1672+ 15.59 3.33

*Intel Xeon(R) CPU E5-2620 v3 @ 2.40GHz Quadro K600
+Intel Xeon(R) CPU E5-2650 v3 @ 2.60GHz Tesla K20m

Table II: Performance of GPU based solver for 2D lid-driven cavity flow using PISO algorithm. The Pressure Poisson step
is only run on GPU in the above set of simulations. Work units represent the total simulation time for first 100 steps.

Number of Cells Total Time (s) Pressure Poisson Time (s) Current Speed up
(Approximate) CPU/1P GPU/Cuda 1P vs GPU

1 x 106 5131 5026+ 163+ 30.83
5 x 106 26075 25305+ 842+ 30.05

+Intel Xeon(R) CPU E5-2650 v3 @ 2.60GHz Tesla K20m

Table III: Pressure Poisson solve time comparison for 2D lid-driven cavity flow using double correction PISO algorithm
(Tested by running the case for first 100 steps).

of ∼4x, when tested with half million computational cells
and compared against Serial Code.

The real speedup obtained with GPU can be witnessed by
comparing the time taken for pressure Poisson step alone.
This is due to the fact that the algorithm steps other than
pressure Poisson solver are carried out on CPU in serial
fashion in the current work. Therefore exclusive pressure
Poisson solver time comparison has been presented in Table
III. The pressure Poisson algorithm running on GPU (Tesla-
K20) is ∼30 times faster than the serial version of Pressure
Poisson.

VI. CONCLUSION AND FUTURE WORK

A GPU based solver is developed to solve the pressure
Poisson equation, which is the most time consuming part
of the solution algorithm of incompressible Navier-Stokes
equations. The developed code effectively parallelizes the al-
gebraic multigrid preconditioned conjugate gradient method.
The implemented solver works for any arbitrary geometry
with polyhedral cells and can be called by OpenFOAM
CFD tool framework instead of its default pressure Poisson
solvers. The current methodology is well suited for Tesla
and Quadro GPU architectures and it is believed that it can
give similar performance improvement for other GPUs as
well. The GPU based solver performance was tested by
simulating standard benchmark test case called lid driven
cavity flow for different grid sizes. The efficiency of GPU
parallelization increased with increase in computational grid
size. The current GPU based solver has shown a speedup of
approximately 16 when compared to single cpu core and
3.3 when compared to OpenFOAM MPI version using 8
cpu cores, for a grid size of 5 million cells. Even on a low

end easily accessible GPU processor like Nvidia Quadro-
K600, the current implementation has achieved a speed up
of ∼4x against serial code, when tested with half million
computational cells.

Future perspective of improvements include additional
GPU parallelization of predictor and corrector steps in
the Navier-Stokes solution algorithm. Also extending the
implementation to multi-GPU multi-CPU architectures is
another interesting direction for future work.
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