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Abstract. The direct simulation Monte Carlo (DSMC) method takes advantage of phenomenological models that can efficiently
reproduce macroscopic transport and chemistry rates from elementary collisional kinetic data. As in classical kinetic theory of
gases, reproduction of viscosity, thermal conductivity, and diffusion coefficients rely on the scattering dynamics that particles
undergo during collisions. In this work, the still under-explored Kersch & Morokoff’s (M-1) phenomenological scattering model
is implemented in the DSMC-SPARTA solver. In essence, this model is a modification of the well-known variable hard/soft sphere
(VHS/VSS) models for repulsive interactions to have a linear distribution of scattering angles in terms of the impact parameter.
Such a feature, in general, better represents observations from quasi-classical trajectory (QCT) calculations based on ab-initio
data. While the energy-dependence of M-1 collision cross-section remains the same as in VHS model, M-1 predicts more realistic
diffusion coefficients that are, in general, 20% higher than those obtained with VHS scattering law. M1-model recovers Schmidt
numbers (Sc) within 5% of those obtained from the Lennard-Jones (LJ) and Abrahamson (Abr) interaction models at temperatures
as high as 11,000 K. A distinct feature of M-1 model is the absence of the VSS anisotropic scattering fitting parameter (α) and its
applicability for large range of temperatures, and therefore demands no calibration efforts other than fitting the viscosity index (ω).
In this aspect, without additional computational costs, M-1 model is potentially more suitable for conditions in which experimental
diffusion-data is not available to fit the VSS parameter over a large temperature interval.

INTRODUCTION

The direct simulation Monte Carlo (DSMC) is a widely used stochastic approach for solution of the integro-differential
Boltzmann equation for gas flows [1] by Monte Carlo evaluation of trajectories of N-particle systems. Drag and aero-
thermal heating quantification in spacecrafts incentivized the early developments of DSMC [2]. In the present era,
DSMC finds application for solving rarefied gas flow problems in high-altitude hypersonic aero-thermodynamics [3],
heat and mass transfer in porous media [4], vacuum technology [5], planetary sciences [6], aerosols [7], phonon
transport [8], etc.

Over sufficiently small intervals, by decoupling the molecular motion and interaction processes, DSMC first ad-
vects the particles deterministically according to their velocities, also termed as free transport, and then describes the
collisions by statistical models with a specified interaction potential. The choice of interaction potential substantially
affects the simulation fidelity and computational complexity. Early implementations of the DSMC method relied on
purely repulsive hard sphere (HS) interaction model [9]. The HS model, however, deviates from experimental obser-
vations for common gases [10] due to a square-root viscosity variation with temperature. The variable hard sphere
(VHS) model proposed by Bird [1] results in a more general power-law viscosity variation with temperature; and has
been widely used for DSMC simulations of single-species gas flows due to its computational efficiency and ease of
implementation. The VHS model, however, deviates from experimental observations for common multi-species flows
[11, 12] involving diffusive transport. Later, several variations of the VHS model were proposed, including, the vari-
able soft sphere (VSS) [12], M-1 [13], generalized soft sphere (GSS) [14], all of which belong to a class of repulsive
interactions. The VSS model modifies the scattering law of the VHS model by using a scattering parameter (α) that
allows reproduction of measured diffusion coefficients in addition to viscosity coefficient. M-1 model is a modification
of VHS model to have a linear distribution of scattering angles in terms of the impact parameter. This modification al-
lows M-1 to reproduce correct viscosity and diffusivity without the need of additional parameter (α). The GSS model,
although general, needs additional parameters for reproducing the viscosity and diffusion coefficients. The present
paper aims to quantify the differences in transport properties recovered from the VHS, VSS, and the M-1 model for a
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variety of flow conditions involving momentum and diffusive transport processes.
In the section that follows, we give a brief overview of the multi-species Boltzmann equation. It discusses the

key ideas of the phenomenological scattering models in the process. The penultimate section presents the results and
discussions on implementation of M-1 scattering models. Relevant rarefied flows involving momentum and diffusive
transport have been simulated in order to verify and validate the scattering models. Concluding remarks and future
work are presented in the final section.

THEORY AND BACKGROUND

Suppose we consider a mixture of n species (n ≥ 2), each of them is represented by a number distribution function
f (i)(t, x, v), then the multi-species Boltzmann equation is given by

∂ f (i)

∂t
+ v · ∇x f (i) =

n∑
j=1

Q(i j)( f (i), f ( j)), i = 1, 2, . . . , n,

where f (i) = f (i)(t, x, v) is the one-particle distribution function of time t, position x, and particle velocity v. f (i) dx dv
gives the number of particles of species i to be found in an infinitesimal volume dx dv centered at the point (x, v) of
the phase space. Q(i j) is the collision operator taking into account interactions between species i and j, and acts only
in the velocity space:

Q(i j)( f (i), f ( j))(v) =

∫
Rd

∫
S d−1

Bi j(|v − v∗|, σ · ̂(v − v∗))
[
f (i)(v′) f ( j)(v′∗) − f (i)(v) f ( j)(v∗)

]
dσ dv∗. (1)

where (v, v∗) and (v′, v′∗) denote the pre- and post- collision velocity pairs, σ is the vector varying over the unit sphere
S2, and Bi j is the collision kernel depending only on |v − v∗| and angle between v − v∗ and σ, and Bi j = Bji. During
collisions, the momentum and energy are conserved

miv + mjv∗ = miv′ + mjv′∗, mi|v|2 + mj|v∗|2 = mi|v′|2 + mj|v′∗|2, (2)

where mi, mj denote the mass of particles of species i and j respectively. Then

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
v′ =

miv + mjv∗
(mi + mj)

+
mj

(mi + mj)
|v − v∗|σ,

v′∗ =
miv + mjv∗
(mi + mj)

− mi

(mi + mj)
|v − v∗|σ.

(3)

where miv + mjv∗/(mi + mj) is the velocity of center of mass of the pair.
The quantity Bi j (≥ 0) is the collision kernel depending only on |v− v∗| and the scattering angle χ (angle between

v − v∗ and v′ − v′∗), and can be expressed as

Bi j = Bi j(|v − v∗|, cos χ), cos χ =
σ · (v − v∗)
|v − v∗| . (4)

Given the interaction potential between particles, the specific form of Bi j can be determined using the classical
scattering theory (cf. [15]):

Bi j(|v − v∗|, cos χ) = |v − v∗| Σi j(|v − v∗|, χ), (5)

where Σi j is the differential cross-section given by

Σi j(|v − v∗|, χ) = bi j

sin χ

∣∣∣∣∣∣
∂bi j

∂χ

∣∣∣∣∣∣ , (6)

with bi j being the impact parameter.
With the advent of petascale computing and recent advances in applied mathematics, it is possible to solve the

full Boltzmann for complex spatially non-homogeneous non-equilibrium flow problems [16, 17, 18, 19]. In practice,
however, direct simulation Monte Carlo (DSMC) is a standard approach for studying rarefied non-equilibrium flows
of engineering interest. Under certain assumptions, DSMC has been shown to reproduce Boltzmann kinetic equation
via a Monte Carlo integration [20]. Strictly speaking, the DSMC method can be derived rigorously as the Monte Carlo
solution of the N-particle master kinetic equation [21].
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Scattering Models

With a few exceptions (e.g. hard sphere molecules), the explicit form of differential cross-section Σi j can be hard to
obtain since bi j is related to χ implicitly. To avoid this complexity, phenomenological collision kernels are often used
in practice with the aim to reproduce the correct transport coefficients.

Koura et al. [12] introduced a scattering model so called as Variable Soft Sphere (VSS) by assuming an explicit
cosine dependence between scattering angle and impact parameter, defined as:

χ = 2 cos−1{(bi j/d(i j))
1/αi j }, (7)

where αi j is the scattering parameter, and d(i j) is the diameter borrowed from Bird’s (cf. equation 4.73 in [1]) Variable
Hard Sphere (VHS) model, which is defined as

d(i j) = d(ref,i j)

[(
2kBT(ref,i j)

mim j

mi+m j
|v − v∗|2

)ωi j−0.5
1

Γ(2.5 − ωi j)

]1/2
. (8)

Here Γ denotes the usual Gamma function, d(ref,i j), T(ref,i j), and ωi j are, respectively, the reference diameter, the refer-
ence temperature, and the viscosity index. The diameter d(ref,i j) and exponent αi j are determined so that the transport
(viscosity and diffusion) coefficients of VSS are consistent with experimental data.

However, the experimental diffusion-data is usually not available to fit the VSS parameter αi j over a large tem-
perature interval. Kersch [13] introduced the M − 1 model as a modification of the well-known variable hard/soft
sphere (VHS/VSS) models for repulsive interactions to have a linear distribution of scattering angles in terms of the
impact parameter. The scattering in M-1 model is given as

χ = π{1 − bi j/d(M1,i j)}, d(M1,i j) =

√
4

3
d(i j) (9)

M-1 model needs only the viscosity exponent to match the experimental data on viscosity and reproduce diffusion
coefficients that agree with the corresponding Schmidt numbers. It is worth noting that this linear relationship of
scattering angle and the impact parameter is similar to the one obtained for high energy Lennard Jones interactions
(see equation 30 in [22]). This, in part, explains why M-1 recovers Schmidt numbers (Sc) within 5% of those obtained
from the Lennard-Jones (LJ) at temperatures as high as 11,000 K.
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FIGURE 1: (a) Variation of scattering angle wrt impact parameter for different scattering models at different relative
collisional energies, and (b) Comparison of inverse Schmidt from different scattering models for different species
against experimental data from [23].
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Figure (1a) illustrates the variation of scattering angle as a function of impact parameter for VHS, VSS, and M-1
models for different relative collisional energies. M-1 model reproduces Abrahamson (Born-Mayer type) potential for
high energy collisions, which is known to be near-linear for repulsive interactions [13]. This linear scattering feature,
in general, better represents observations from quasi-classical trajectory (QCT) calculations based on ab-initio data.

Figure (1b) shows the inverse Schmidt number for different species. M1-model recovers Schmidt numbers (Sc)
within 5% of those obtained from the Lennard-Jones (LJ) and Abrahamson (Abr) interaction models at temperatures
as high as 11,000 K. While the energy dependence of M-1 collision cross-section remains the same as in VHS model,
M-1 predicts more realistic diffusion coefficients that are 20% higher than those obtained with VHS scattering law. A
distinct feature of M-1 model is the absence of the VSS anisotropic scattering fitting parameter (α) and its applicability
for large range of temperatures.

RESULTS AND DISCUSSIONS

In this section, we verify and validate the accuracy of the M-1 model for recovering the viscosity, diffusion, and inverse
Schmidt number for a range of physical conditions, including, high speed, and high temperature flows involving
momentum, heat, and diffusive transport.

Standard test cases of Couette flow [24, 25], planar Ar-Ar self diffusion [1], Ar-He mass diffusion [1], and un-
steady diffusion [26] have been considered in the present work. The results are compared with published experimental
results, DSMC solutions, or analytical solutions wherever applicable.

SPARTA [27] has been employed for implementing M-1 model, and carrying out DSMC verifications in the
present work. It implements the DSMC method as proposed by Bird [1]. Herein, given the temperature range of inter-
est, only translational and rotational energy modes are considered. The solver has been benchmarked [27] and widely
used for studying hypersonic, subsonic and thermal [17, 28, 29, 30, 31] gas flow problems. In particular, SPARTA re-
lying on C++ object oriented design, has been shown to perform very well on massively parallel architectures [27, 28].
In this work, cell size less than λ/3 has been ensured in all the test cases. A minimum of 30 DSMC simulator particles
per cell are used in conjunction with the no-time collision (NTC) algorithm. Each steady-state simulation has been
averaged for a minimum 100,000 samples, which are taken at every time step, so as to minimize the statistical noise.
The VHS/VSS model parameters for different species have been directly taken from [1].

Couette Flow
Couette flow serves as a test case for reproducing the correct viscosity coefficient. The coordinates are chosen such
that the walls are parallel to the y direction and x is the direction perpendicular to the walls. The geometry as well as
boundary conditions are shown in Figure 2. The two parallel walls are set H = 1m apart. The left wall is at rest, and
the right wall moves in +y direction. The case parameters [24, 25] have been indicated in Table (1). The simulation is
carried out for three different cases corresponding to wall temperatures of 273K, 40K, and 1000K respectively. Argon
is taken as the working gas.

ul, Tl ur, Tr

x

y
H

FIGURE 2: Numerical setup for Couette flow. Distance between the walls is fixed as H = 1 m. ul, and ur refer to
the velocity of left and right walls respectively; whereas Tl and Tr refer to the temperature of the left and right walls
respectively. The left most node of the domain has been indicated by blue, and the right most node in red.

Figure (3a) illustrates the variation of normalized temperature obtained using the Lennard-Jones Polynomial
Approximation (LJPA) [24, 25], VHS, VSS, and M-1 model. The agreement between the four models is excellent with
the maximum difference in normalized temperature below 0.1%. Similarly, Figures (3b, 3c, 3d) depict the difference
between DSMC flow velocity and incompressible Couette flow velocity vinc = vw x/H for three cases. At Tw = 273K
(Case 01), the results from all the models are comparable. For Tw = 40K (Case 02), and Tw = 1000K (Case 03) we
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TABLE 1: Case parameters for the Couette flow
[24, 25].

Quantity Value

Initial number density, n (m−3) 1.4 × 1020

Moving Wall velocity, vw (m/s) 300
Timestep, Δt (μs) 1
Number of cells 500
Particles per cell 200

Number of transient timesteps 1.2 × 106

Number of steady timesteps 50 × 106

Molecular parameters

Molecular mass, m0 (×1027 kg) 66.3
Viscosity index, ωi j 0.81
Scattering parameter, αi j 1.4
Reference diameter, dref,i j (×1010m) 4.17
Reference temperature, Tref,i j (K) 273

Reference viscosity, μref,i j (Pa · s) 2.117 × 10−5

observe that VHS, VSS, M-1 models reproduce approximately same velocity. This conclusively asserts that all the
three models reproduce the same viscosity coefficient.

Fick’s Ar-Ar Self Diffusion
In the current test case, we consider the effect of diffusive transport (see section 12.5 in [1]). The schematic remains
the same as in the previous test case. Argon-Argon mixture is taken as the working gas. To differentiate between two
types of Argon, we tag the molecules as Ar1 and Ar2. At the left boundary, Ar1 enters and exits at the right boundary.
At the right boundary, Ar2 enters and exits at the left boundary. The molecules enter the domain with zero mean
velocity. The initial, and reference temperatures are kept at 273K. The schematic of the problem has been illustrated
in Fig. (4).

Figure (5a) shows the variation of species concentrations along the domain using VHS, VSS, and M-1 collision
models. Since the species-1 enters from the left boundary and exits at right, we observe a drop in species-1 concen-
tration as we move towards the right boundary. Conversely for species-2, since the species-2 enters from the right
boundary and exits at left, we observe a drop in species-2 concentration as we move towards the left boundary. It is
also worth noting that throughout the domain at any given x location, the sum of the concentrations of two species is
unity. Moreover, the concentrations from all the three models are in excellent agreement with each other.

Figure (5b) shows the variation of diffusion velocity along the domain. Since the species-1 enters from the left
boundary and exits at right, we observe a low net diffusion speed for the first species and a high diffusion speed for
the second species. Conversely at the right boundary, since the species-2 enters from the right boundary and exits at
left, we observe a low diffusion speed for the second species and high diffusion speed for the first species. It is evident
that VHS model reproduces lower diffusion speed for both species. Nevertheless, the diffusion speed from VSS and
M-1 models are in excellent agreement with each other.

Fick’s Ar-He Mass Diffusion
In the current test case, we consider the effect of mass diffusion for dissimilar species. The conditions remain the same
as in previous case, except that Argon-Helium mixture is taken as the working gas. More specifically, Argon enters
the left boundary and exits at the right boundary; and Helium enters through the right and exits at left. The schematic
of the problem has been illustrated in Fig. (6).

Figure (7a) shows the variation of concentration profile for the two species. We first note that the concentrations
from all the three models are in excellent agreement with each other. Next, we observe that the concentration of Helium
remains greater than Argon for a larger portion of the domain. This can be directly inferred from the mass/momentum
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FIGURE 3: Comparison of (a) normalized temperatures for Cases 1–3, (b) velocity variation for Case 1, (c) velocity
variation for Case 2, and (d) velocity variation for Case 3, along the domain length obtained using LJPA, VHS, VSS,
and M-1 models.

HAr1 Ar2

x

y

FIGURE 4: Numerical setup for Ar-Ar self diffusion. Distance between the walls is fixed as H.

conservation principle i.e., the heavier species diffuses slower and the lighter species diffuses faster. Therefore, after
a sufficiently long time, the concentration of lighter species will be greater than that of heavier species for a major
part of the domain. As in the self-diffusion case, the sum of the concentrations of both species is unity throughout the
domain at any given x location. The effect of the momentum conservation is more pronounced in the Fig. (7b) where
we observe a higher diffusion speed for the lighter species and a lower diffusion speed for the heavier species. It is
again evident that VHS model reproduces lower diffusion speed for both species. Nevertheless, the diffusion speed
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FIGURE 5: Variation of number density and diffusion velocity along the domain obtained with different DSMC
scattering models for Argon-Argon self-diffusion test case.
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FIGURE 6: Numerical setup for Ar-He self diffusion. Distance between the walls is fixed as H.

from VSS and M-1 models are in excellent agreement with each other.

Unsteady Ar-Ar Self Diffusion
In the present simulations, we test the scattering models for reproducing analytical diffusion coefficients. This is
essentially an initial value problem (see [26]). Initially at t = 0, the first Argon species Ar1 is concentrated in the
region [−H,H], and Ar2 occupies the rest of the domain i.e., {[−L, L] − [−H,H]}, where L � H. The schematic of
the problem has been illustrated in the Fig. (8a). The initial mixture is then left to diffuse over time. The analytical
evolution of concentration of first species is given as

C
C0

=
1

2

{
erf

H − x

2
√

Dt
+ erf

H + x

2
√

Dt

}
(10)

where C is the concentration, C0 is initial concentration, D is diffusion coefficient.
Figures (8b,9a,9b) illustrate the variation of concentration of first species along the domain at different time

instants obtained from different scattering models for different temperatures. It is evident that diffusion reproduced by
M-1 matches well with VSS at temperatures as high as 10000 K. At a given time instant, the diffusion reproduced by
VHS model is lower than VSS and M-1.

Schmidt number
In DSMC, the phenomenological scattering models are calibrated against experimental data so that the simulation
models reproduce the correct transport properties, namely, viscosity and diffusion. In the present case, we run a set of
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FIGURE 7: Variation of number density and diffusion velocity along the domain obtained with different DSMC
scattering models for Argon-Helium mass-diffusion test case.
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FIGURE 8: (a) Schematic for unsteady Ar-Ar self diffusion test case, and (b) Variation of concentration of first species
along the domain at different time instants with T=273 K.

1-D Couette and Fickian flows for extracting viscosity and diffusivity for different molecular species.

The viscosity μ is recovered from 1-D Couette flow DSMC simulations through its relationship to shear-stress
and velocity-gradient relationship [25]

μ =
τ

dv/dx
=
< ρ cx cy >

dv/dx
(11)

where c = {cx, cy, cz} is the thermal velocity, v is y-component of velocity, τ is shear-stress, and ρ is density. The
brackets, < . . . > , in the expression for shear-stress denote an average value. The reported average viscosity and
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FIGURE 9: Variation of concentration of first species along the domain at different time instants in the unsteady Ar-Ar
diffusion problem: (a) T=3000 K, and (b) T=10000 K

shear stress values are averaged over the central 60% of the domain. This averaging procedure is used in order to
exclude possible effects of the Knudsen layer, which might extend several mean free paths from the walls.

The self-diffusion coefficient D is recovered from 1-D Fickian flow simulations using (cf. equation 12.18 in [1])

D = −(u(1)
x − u(2)

x )
n(1) n(2)

n2

Δx
Δ(n(1)/n)

(12)

where n(1), n(2), n denote the number density of first species, second species, and the mixture respectively; and u(1)
x , u(2)

x
denote the x-velocity of first and second species respectively. Note that this equation is a first order approximation to
the diffusion equation (see [23]), and therefore the values computed from this equation might not be entirely accurate
especially for the rarefied flows, since the higher order terms have not been accounted for. It is worth emphasizing
that the full diffusion equation based on moment of the distribution function is highly non-trivial from a computation
perspective (see [23]). For consistency and fair comparison, we use (12) for all the models. Knowing the viscosity and
diffusion coefficients, we compute the inverse Schmidt number (Sc−1 = ρD/μ) from VHS, VSS, and M-1 models for
different species.

Table (2) presents the viscosity, diffusivity, and inverse Schmidt numbers recovered from experiments, VHS,
VSS, and M-1 models for different molecular species. Considering the error of transport property calibration (see
[32]), and the statistical noise in DSMC simulations, one can infer that the M-1 model reproduces the correct viscosity
and diffusivity similar to the one reproduced by VSS model, albeit without the need for extra scattering parameter α.

Figure (10) presents the inverse Schmidt recovered using different scattering models for different molecular
species. The numerically recovered inverse Schmidt number is somewhat lower than the experimentally determined
Schmidt number for all the models, which can be attributed to statistical/averaging errors inherent to DSMC simula-
tions. To conclude, the M1-model recovers Schmidt numbers (Sc) within 1% (except for Helium) of those obtained
from VSS model, and within 5% of those obtained from the experiments.

CONCLUSIONS

We have presented an implementation of M-1 scattering model in general purpose SPARTA-DSMC framework. M-1
model is a modification of the well-known variable hard/soft sphere (VHS/VSS) models for repulsive interactions to
have a linear distribution of scattering angles in terms of the impact parameter. A distinct feature of M-1 model is the
absence of the VSS anisotropic scattering fitting parameter (α) and its applicability for large range of temperatures. To
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TABLE 2: Numerically determined inverse Schmidt number for various species using VHS, VSS, and M-1 models. The
experimental data is taken from Chapman et al. [23].

species
μexp

(×105 Pa · s)

μvhs

μexp

μvss

μexp

μM1

μexp

Dexp

(×105 m2/s)

Dvhs

Dexp

Dvss

Dexp

DM1

Dexp

Sc−1
exp

Sc−1
vhs

Sc−1
exp

Sc−1
vss

Sc−1
exp

Sc−1
M1

Sc−1
exp

He 1.97 0.89 0.93 0.88 15.5 0.74 0.86 0.93 1.30 0.86 0.96 1.18
CH4 1.02 1.0 0.95 0.94 2.06 0.69 0.92 0.87 1.44 0.68 0.95 0.92
CO 1.63 0.96 1.05 0.99 1.90 0.74 0.95 0.9 1.45 0.76 0.89 0.91
N2 1.66 1.00 1.00 1.01 1.78 0.80 0.96 0.99 1.34 0.79 0.95 0.97
O2 1.92 1.01 1.03 1.02 1.81 0.78 0.96 0.97 1.34 0.77 0.91 0.94
Ar 2.12 1.05 1.05 1.03 1.57 0.78 0.96 0.98 1.32 0.72 0.90 0.93

CO2 1.38 1.05 1.05 0.99 0.96 0.72 0.96 0.89 1.37 0.67 0.89 0.88
Kr 2.33 1.0 1.10 1.11 0.79 0.80 0.94 1.01 1.27 0.70 0.83 0.88
Xe 2.11 1.6 1.17 1.14 0.48 0.75 0.93 0.94 1.33 0.61 0.76 0.78

Average – 0.92 0.93 0.91 – 0.68 0.84 0.84 – 0.73 0.89 0.93

He

CH4
CO

N2 O2

Ar

CO2Kr Xe

(VHS: Bird’94)

(LJ: Kersch’94)

(M1: Kersch’94)

Viscosity Exponent

1/
Sc

0.65 0.7 0.75 0.8 0.85 0.9 0.95 10.8

0.9

1

1.1

1.2

1.3

1.4

1.5 Expt
VHS
VSS
M1

FIGURE 10: Comparison of observed inverse Schmidt from different scattering models for different species against
experimental data from [23], and theoretical inverse Schmidt number.

verify the M-1 model and its implementation, we carried out rarefied-to-continuum gas flow simulations for Couette
flow, planar Ar-Ar self diffusion, Ar-He mass diffusion, and unsteady diffusion flows at different Knudsen numbers
and wide range of physical conditions, including, large temperatures, and large velocity gradients. Each of these cases,
involving either momentum or diffusive transport, have been run with different scattering models namely VHS, VHS,
and M-1. M1-model recovers Schmidt numbers (Sc) within 1% of those obtained from VSS model, and within 5% of
those obtained from the experimental data. We conclude that the results obtained from M-1 and VSS are fairly close
ignoring the statistical noise and the errors therein. The M-1 model, in particular, is suitable for conditions in which
experimental diffusion data is not available to fit the VSS scattering parameter over a large temperature interval. The
future work will likely focus on further tests for hyper-thermal velocity cases. Application for reactive flow involving
multiple species is yet another interesting direction.
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