
AIP Conference Proceedings 2132, 060001 (2019); https://doi.org/10.1063/1.5119541 2132, 060001

© 2019 Author(s).

Fast deterministic solution of the full
Boltzmann equation on graphics processing
units
Cite as: AIP Conference Proceedings 2132, 060001 (2019); https://doi.org/10.1063/1.5119541
Published Online: 05 August 2019

Shashank Jaiswal, Jingwei Hu, and Alina A. Alexeenko

https://printorders.aip.org/?utm_source=Scitation&utm_medium=banner&utm_campaign=PDF%20Cover%20Page%20POD
https://doi.org/10.1063/1.5119541
https://doi.org/10.1063/1.5119541
https://aip.scitation.org/author/Jaiswal%2C+Shashank
https://aip.scitation.org/author/Hu%2C+Jingwei
https://aip.scitation.org/author/Alexeenko%2C+Alina+A
https://doi.org/10.1063/1.5119541
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5119541

Fast deterministic solution of the full Boltzmann equation on
Graphics Processing Units

Shashank Jaiswal1, Jingwei Hu2 and Alina A. Alexeenko1,a)

1School of Aeronautics & Astronautics, Purdue University, West Lafayette, IN 47907, USA
2Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA

a)Corresponding author: alexeenk@purdue.edu

Abstract. The Boltzmann equation, a six-dimensional integro-differential equation, governs the fluid flow behavior at molecular
level for a wide range of physical phenomena, including shocks, turbulence, diffusion, and non-equilibrium chemistry which are
beyond the reach of continuum fluid flow modelling based on the Navier-Stokes equations. Despite Boltzmann equation’s wide
applicability, its deterministic solution presents a huge computational challenge, and has been so far tractable only in simplified
forms. We implement the Discontinuous Galerkin Fast Spectral (DGFS) method (Jaiswal, Alexeenko, and Hu 2019 [1]) for solving
the full Boltzmann equation on streaming multi-processors. The proposed method is flexible and robust allowing: a) arbitrary un-
structured geometries, b) control of spatial accuracy using high-order polynomial approximation without compromising simulation
stability, c) exponential error convergence (spectral accuracy) in velocity space, and d) compact nature of DG as well as collision
operator thus minimizing communication and maximizing parallel efficiency. The DG operators (for instance gradient, curl, etc),
as well as the collision operator is applied in an element-local way, with flux-based element-to-element coupling. It is this locality
that equips DGFS with strong parallel performance on streaming multi-processors. In the present work, we describe, devise and
implement DGFS for General-Purpose Graphics Processing Units (GP-GPU). We consider the simulations of 0D spatially homoge-
neous, and rarefied 1D Fourier heat transfer. A speedup of approximately 10–100x, and parallel efficiency of 0.95 is demonstrated
on multi-CPU/multi-GPU architectures. It is this speedup that now allows researchers to solve problems within a day that would
otherwise take months on traditional CPUs. The key optimizations and techniques used to achieve these GPU performance results
have been highlighted.

Introduction

For numerical simulations of flow behavior, the Navier-Stokes (NS) equations [2] are widely used. For aerospace
applications in particular, NS have been used in simulating flow phenomenon in early 90’s space-shuttle missions [3],
as well as the recent deep-space Space Launch System (SLS) launch vehicles [4]. Yet, the Navier-Stokes fails when
it comes to simulation of flow in low density environment, for instance, the atmospheric re-entry at high altitudes, as
well as the flows in micro-geometries such as blood vessels.

Perhaps, more fundamental than Navier-Stokes, is the Boltzmann equation [5] which models the molecule-
molecule interaction. In theory, under non-equilibrium conditions, Navier-Stokes equations can be derived as the
asymptotic limit of the Boltzmann equation [6, 7]. The Boltzmann equation, a six-dimensional integro-differential
equation, governs the fluid flow behavior for a wide range of physical phenomena, including shocks, turbulence, dif-
fusion, and non-equilibrium chemistry which are beyond the reach of Navier-Stokes equations. Yet, the numerical
solution of this equation presents a huge computational challenge even on today’s petascale clusters. The equation is
often deliberately simplified for engineering applications, primarily due to its high dimensionality (the six-dimensional
nature: ∼ O(N6) computations, with N being the number of points in each direction of velocity mesh); and the com-
plicated collision operator.

The Boltzmann equation is a phase-space equation which describes molecular interaction statistically. A point
in phase-space is described by three position coordinates (physical-space), and three velocity coordinates (velocity-
space) resulting in six-dimensional solution space. In velocity-space, to determine how molecules collide, and what
happens after collision (pre and post-collision states), we are required to solve a collision integral. A direct algorithm
will require O(N6) computations for the solution of collision integral [8]. In the present work, we implement the

31st International Symposium on Rarefied Gas Dynamics
AIP Conf. Proc. 2132, 060001-1–060001-14; https://doi.org/10.1063/1.5119541

Published by AIP Publishing. 978-0-7354-1874-5/$30.00

060001-1

recently-introduced fast-spectral method [9] for solving full Boltzmann equation. The method has computational
complexity of O(MN4 log N), where M � N2 is number of points on half-sphere (details on complexity in section a)),
and exhibits spectral convergence behavior. In particular, the method is applicable for general molecular interactions.
More than > 99% of the computation-time is spent on the solution of this collision integral, which in turn presents the
possibility of two-order-of-magnitude speedup in computation time by accelerating solvers for this step.

In addition to the solution of collision integral in velocity-space, we are required to advect the Boltzmann equa-
tion in physical space. To this end, we use discontinuous Galerkin (DG) [10] method. The DG method is amenable
to high-order spatial and temporal accuracy, needed for robust and flexible numerics. Moreover, the method requires
minimal processor-to-processor communication. To be more specific, the communication strictly takes place at the
processor boundaries, and usually requires a single collective near-neighbor data-exchange at each timestep1. This
equips the method with excellent nearly-linear scaling characteristics on large-scale clusters, as well as heterogeneous
architectures (see [11, 12] for instance).

Related work
The Boltzmann equation has so far been tractable only in simplified forms such as linearized-Boltzmann (LB) [13],
Bhatnagar-Gross-Krook (BGK) [14], and ellipsoidal Bhatnagar-Gross-Krook (ES-BGK) [15]. Implementations of
DG method for solving the BGK and ES-BGK equations can be found in [16] for 0D/1D, and [17] for 2D flow
problems. Low-order finite-volume based serial implementations of the Boltzmann equation for anisotropic scattering
can be found in [18]. Without being exhaustive, we refer to [1, 19, 20] for a comprehensive review. To the best of
our knowledge, on GPU, DG discretization in physical space coupled with fast spectral method in velocity space for
general molecular interactions, hasn’t been applied for solving the full Boltzmann equation.

Contribution
In this work, our contribution is four folds:

• First high-order spatially and temporally accurate Boltzmann equation solver applicable for general molecular
interaction on single/multiple GPUs.

• Discussion of the fundamental ideas behind the algorithm and implementation which makes it amenable to
excellent nearly-linear scaling on large clusters.

• Verification and Benchmarking of the method/implementation for standard rarefied flows.

Paper organization
In the section that follows, we give a brief overview of the Boltzmann equation, as well as details of Galerkin projection
needed for high-order spatially-and-temporally accurate solution of partial differential equations. It discusses the key
ideas of the DG method in the process. The collision operator section describes the fast Fourier spectral method,
including the psuedo-code of the algorithm. Benchmark tests and results are discussed in the penultimate section.
Concluding remarks and future work are presented in the last section.

The Boltzmann equation

The non-dimensional Boltzmann equation for a single-species, monatomic gas without external forces can be written
as

∂ f
∂t

+ c · ∇x f =
1

Kn
Q(f , f), t ≥ 0, x ∈ Ωx, c ∈ R3, (1)

where f = f (t, x, c) is the one-particle probability density function (PDF) of time t, position x, and particle velocity c.
Q(f , f) is the collision operator describing the binary collisions among particles, and acts only in the velocity space:

Q(f , f)(c) =

∫
R3

∫
S2
B(c − c∗, σ)[f (c′) f (c′∗) − f (c) f (c∗)] dσ dc∗, (2)

1In particular for spectral/DG 3-D finite-element codes, for instance Nek5000, the GSLIB (https://github.com/gslib) implementation of
Gather for collective near-neighbor data exchange have been shown to scale extremely-well beyond thousand-cores.

060001-2

where (c, c∗) and (c′, c′∗) denote the pre and post collision velocity pairs, which are related through momentum and
energy conservation as

c′ =
c + c∗

2
+
|c − c∗|

2
σ, c′∗ =

c + c∗
2
−
|c − c∗|

2
σ, (3)

with the vector σ varying over the unit sphere S2. The quantity B (≥ 0) is the collision kernel depending only on
|c − c∗| and the scattering angle χ (angle between c − c∗ and c′ − c′∗), and can be expressed as

B(c − c∗, σ) = B(|c − c∗|, cos χ), cos χ =
σ · (c − c∗)
|c − c∗|

. (4)

In the widely-used variable soft sphere (VSS) model, the function B and the Knudsen number Kn are given as

B = bω, α |c − c∗|2(1−ω) (1 + cos χ)α−1, bω, α =
α

22−ω+α Γ(2.5 − ω) π
, Kn =

1
√

2 π n0 d2
ref (Tref/T0)ω−0.5 H0

. (5)

Here Γ is the Gamma function, ω, α, dref and Tref are, respectively, the viscosity index, scattering parameter, reference
diameter, and reference temperature [21]. Additionally, H0, T0, and n0 denote the characteristic length, characteristic
temperature, and characteristic number density used for non-dimensionalization (see [1] for more details). Note that
0.5 ≤ ω ≤ 1, 1 ≤ α ≤ 2. In particular, when α = 1, one recovers the variable hard sphere (VHS) model, wherein
ω = 0.5 corresponds to hard spheres and ω = 1 corresponds to Maxwell molecules.

The discontinuous Galerkin (DG) formulation

For simplicity, we assume that the Boltzmann equation (1) is posed in the 1D domain x ∈ [L, R] = Ωx, subject to
some initial condition

f (0, x, c) = f0(x, c), (6)

and boundary conditions at the left (L) and right (R) boundaries

f (t, L, c) = fL(t, c), c1 > 0; f (t,R, c) = fR(t, c), c1 < 0, (7)

where c1 is the first component of c.

left(L) right(R)
x

y Ωe

Ωe−1 Ωe+1

FIGURE 1. Illustration of 1D mesh.

Our objective is to find f (t, x, c). We start by partitioning the interval Ωx into Ne non-overlapping elements as
illustrated in Fig. 1 such that

Ω ≈

Ne⋃
e=1

Ωe, e = {1, . . . ,Ne}; Ωi ∩Ω j = ∅, ∀ i , j, i, j = {1, . . . ,Ne}. (8)

An arbitrary element e is then defined in the interval Ωe = [xl
e, x

r
e], with xl

e, xr
e being the left and right ends of the

element. In each element, we approximate the solution by a polynomial of order Np (we leave velocity c and time t to
be continuous as of now)

fe(t, x, c) =

K∑
l=1

F e
l (t, c) φe

l (x), x ∈ Ωe = [xl
e, x

r
e], (9)

where φe
l are the polynomial basis functions supported in Ωe, F e

l are the coefficients for the element e that need to be
determined, and K = Np + 1 is the total number of terms in the expansion. The reader is referred to [10] for details on
optimal polynomial basis.

060001-3

Substituting (9) into the equation (1) and conducting the standard Galerkin projection, we obtain

K∑
l=1

Mml
∂

∂t
F e

l − c1

K∑
l=1

SmlF
e

l = −

∫
∂Ωe

n̂e · (c1 fe)∗φe
m dx +

1
Kn

K∑
l1,l2=1

Hm l1 l2Q(F e
l1 ,F

e
l2), 1 ≤ m ≤ K, (10)

where the matricesMml, Sml, and tensorHm l1 l2 are defined as

Mml =

∫
Ωe

φe
m(x) φe

l (x) dx, Sml =

∫
Ωe

φe
l (x)

∂

∂x
φe

m(x) dx, Hm l1 l2 =

∫
Ωe

φe
m(x) φe

l1 (x) φe
l2 (x) dx. (11)

These integrals can be evaluated exactly using the Gauss quadrature.
The first term on the right side of equation (10) is commonly referred as numerical flux, which is important for:

a) exchange of information between elements which are side-by-side, and b) enforcing boundary conditions as in (7).
Specifically, n̂e denotes the outward pointing normal of element e, and

(c1 fe)∗ = {{c1 fe}} + |c1|
1 − a

2
[[fe]], 0 ≤ a ≤ 1, (12)

with

{{c1 fe}} =
c1 f −e + c1 f +

e

2
, [[fe]] = n̂−e f −e + n̂+

e f +
e . (13)

Here, the superscript ‘+’ denotes the information from exterior of the element, and ‘-’ denotes the information from the
interior of the element. For example: For the element Ωe, at the left-edge, the ‘+’ information is the one contributed by
element Ωe−1, and ‘-’ is the information contributed by the element Ωe itself. Similarly at the right-edge of the element
Ωe, the ‘+’ information is the one contributed by element Ωe+1, and ‘-’ is the information contributed by the element
Ωe itself. Note that for the first-element Ωe=1, the ‘+’ information is contributed by the left-boundary condition, and
for the last-element Ωe=Ne , the ‘+’ information is contributed by the right-boundary condition. Thus, the numerical
flux automatically incorporates and enforces the boundary conditions. The role of the flux is to guarantee stability of
the formulation by mimicking the flow of information in the underlying partial differential equation. In particular for
scalar linear advection with constant advection velocity (as in our problem), the upwind flux (a = 0 in (12)) provides
a highly accurate solution to the Riemann problem. Details about other numerical fluxes can be found in [2, 10] for
instance.

The equation (10) can be evolved in time using the explicit Strong Stability Preserving Runge-Kutta (SSP-RK)
method [22] provided one properly discretizes the velocity space and evaluates the collision operator, which we shall
describe in the next section.

The Fourier spectral (FS) method for the collision operator

To discretize the velocity space, we employ a finite difference method, i.e., each velocity dimension is discretized
uniformly with N points in a chosen interval [−L, L]. Given the function values F e

l1
, F e

l2
at N3 velocity grid points,

the fast Fourier spectral method is called as a black box solver to return the values Q(F e
l1
,F e

l2
) on the same grid

with O(MN4 log N) complexity, where M is the number of discretization points on the sphere and M � N. For
completeness, we summarize the main steps of the method below. More details can be found in [1, 9].

In the nutshell, given f (c) and g(c), to evaluate Q(f , g)(c), one proceeds as follows.

• Replace the collision kernel by its symmetrized version:

Bsym(|c − c∗|, cos χ) =
B(|c − c∗|, cos χ) + B(|c − c∗|,− cos χ)

2
. (14)

• Change the variable c∗ to the relative velocity cr = c − c∗:

Q(f , g)(c) =

∫
R3

∫
S2

Bsym(|cr |, σ · ĉr)[f (c′)g(c′∗) − f (c)g(c − cr)] dσ dcr, (15)

where ĉr is the unit vector along cr, and

c′ = c −
cr

2
+
|cr |

2
σ, c′∗ = c −

cr

2
−
|cr |

2
σ. (16)

060001-4

• Determine the extent of velocity domain DL = [−L, L]3, and periodically extend f , g to R3. Truncate the integral
in cr to a ball BR with R = 4

3+
√

2
L.

• Approximate f , g by truncated Fourier series

f N(c) =

N/2−1∑
k=−N/2

f̂kei πL k·c, gN(c) =

N/2−1∑
k=−N/2

ĝkei πL k·c. (17)

Note here k is a three-dimensional index.
• Substitute f N , gN into (15), and perform the Galerkin projection

Q̂k :=
1

(2L)3

∫
DL

Q(f N , gN)(c)e−i πL k·c dc =

N/2−1∑
l,m=−N/2

l+m=k

[G(l,m) −G(m,m)] f̂lĝm, k = −N/2, . . . ,N/2 − 1, (18)

where the kernel mode G is given by

G(l,m) =

∫
BR

∫
S2

Bsym(|cr |, σ · ĉr) e−i πL
l+m

2 ·cr+i πL |cr |
l−m

2 ·σ dσ dcr. (19)

It is clear that the direct evaluation of Q̂k (for all k) would require O(N6) complexity. But if we can find a
low-rank, separated expansion of G(l,m) as

G(l,m) ≈
R∑

r=1

αr(l + m) βr(l) γr(m), (20)

then the gain term (positive part) of Q̂k can be rearranged as

Q̂+
k =

R∑
r=1

αr(k)
N/2−1∑

l, m=−N/2
l+m=k

(
βr(l) f̂l

)
(γr(m)ĝm) , (21)

which is a convolution of two functions βr(l) f̂l and γr(m)ĝm, hence can be computed via fast Fourier transform (FFT)
in O(RN3 log N) operations. Note that the loss term (negative part) of Q̂k is readily a convolution and can be computed
via FFT in O(N3 log N) operations.

In order to find the approximation in (20), we simplify (19) as (using the symmetry of the kernel)

G(l,m) = 2
∫ R

0

∫
S2+

F(l + m, ρ, σ) cos
(
π

L
ρ

l − m
2
· σ

)
dσ dρ, (22)

where S2+ denotes the half sphere, and

F(l + m, ρ, σ) := 2ρ2
∫
S2+

Bsym(ρ, σ · ĉr) cos
(
π

L
ρ

l + m
2
· ĉr

)
dĉr. (23)

Now using the fact that cos(α−β) = cosα cos β+sinα sin β, if we approximate the integral in (22) by a quadrature,
we obtain

G(l,m) ≈ 2
∑
ρ,σ

wρwσF(l + m, ρ, σ)
[
cos

(
π

L
ρ

l
2
· σ

)
cos

(
π

L
ρ

m
2
· σ

)
+ sin

(
π

L
ρ

l
2
· σ

)
sin

(
π

L
ρ

m
2
· σ

)]
, (24)

which is exactly in the desired form (20).
The aforementioned method is applicable for general molecular interactions. For simplicity, In the present work,

we will focus on VHS kernel, for which F does not depend on σ, and is given by a closed-form analytical expression

F(l + m, ρ) = 4 π bω,α ργ+2 Sinc
(π

L
ρ
|l + m|

2

)
(25)

060001-5

where Sinc(x) = sin(x)/x, γ = 2(1 − ω) is the collision-parameter (see eqn. (5)).
Further, we note that G(m,m) in Eq. (18) has an analytical form for VHS molecular interactions, which can be

expressed as

G(m,m) = 16 π2 bω,α

∫ R

0
ργ+2 Sinc

(π
L
ρ|m|

)
dρ (26)

This can be approximated using a quadrature as

G(m,m) ≈
∑
ρ

16 π2 bω,α wρ ρ
γ+2 Sinc

(π
L
ρ|m|

)
(27)

The collision operator algorithm
As simple as the formulations in the last sections appear, there is often a leap between mathematical formulations and
an actual implementation of the algorithms. Note that Q collision-procedure will be called most number of times in a
simulation. Therefore, our motive is to avoid spurious computation for every timestep even if it means sacrificing some
memory. We first outline the procedure for pre-computing variables that can be stored for reuse during the course of
the simulation.

• First, we precompute (π/L ρ l/2 · σ). We use Gauss-Lobatto-Jacobi quadrature (with α = 0, β = 0) for
integration. So ρ, the GLQ zeros, is an array of size N. Additionally, we use spherical design [23] quadrature on
sphere. So, σ, the spherical-quadrature zeros, is an array of size M. l as previously defined is the 3-D velocity-
space index. So l is an array of size N3. Hence (π/L ρ l/2 · σ) is precomputed and stored as a N × M × N3

flattened row-major array apqr. This is described in steps 1–10 of Algo. (1).
• Second, we compute F(l + m, ρ) as per Eq. (25). Note that k = l + m is velocity-space index of size N3. ρ,

the GLQ zeros, is an array of size N. Since both l + m and ρ do not change with time, the term F(l + m, ρ) is
precomputed and stored as a N × N3 flattened row-major array bpr. This is described in step 12 of Algo. (1).

• Third, we precompute G(m,m) as per Eq. (27). The output is stored as a N3 flattened row-major array cr. This
is described in step 13 of Algo. (1).

Next we outline the procedure for computing Q. Recall that our motive is to compute (18)

• First, we compute the forward Fourier transform ofF e
l1

, andF e
l2

to obtain f̂l and ĝm respectively. This is described
in step 1 of Algo. (2).

• Second, we compute G(l,m) as in Eq. (24). Recall that (π/L ρ l/2 ·σ) has been already precomputed and stored
as apqr. Also recall that F(l + m, ρ) has been precomputed and stored as bpr. These can be reused to compute
G(l,m). This is described in step 2–17 of Algo. (2).

• Third, we perform convolutions to compute Q̂k as in Eq. (18). Recall that G(m,m) has been already precomputed
and stored as cr, and can be reused here. Finally, we perform inverse Fourier transform to obtain final Q. This
is described in step 18 of Algo. (2).

It is to be emphasized that, although we select the widely-used collision-kernel (Equation: 5) for demonstration
(see [21] for this choice of B), the algorithm procedure Algo (2) would still be applicable for all the possible choices
of B in practical CFD computations. The pre-computation, however, needs to be adapted accordingly but only slightly
for different choices of B.

The elegance of Collision-Algorithm (2) lies in its use of linear scalar algebraic operations to solve the complex
collision-operator. This is generally critical for performance on GPU architectures (see [24] for details on memory
layout, cache behavior, etc). It is this use of FFT and linear algebraic operations helps us to obtain excellent nearly-
linear scaling characteristics on large-scale clusters needed for performing billion floating-point operations at every
timestep (see efficiency Table 3).

There are five fundamental CUDA-kernels in our implementation as described below. A convex combination of
these are used for implementing Algo. (2).

1. FFT: Performs batched forward Fourier transform. This is used in steps 1 and 9 of Algo. (2).
2. IFFT: Performs batched inverse Fourier transform. This is used in steps 8 and 18 of Algo. (2).

060001-6

Algorithm 1: Pre-computation for Collision-Algorithm[9]
Input: Number of points in each-direction of velocity mesh N, number of points on half-sphere M, spherical

quadrature weight wσ, spherical quadrature-points σ (vector-field size: M), Gauss quadrature-weights wρ (size:
N), Gauss quadrature-points ρ (size: N), collision parameter γ, size of velocity mesh L

Output: a,b,c
Declare:

a (size: MN × N3), b (size: N × N3), c (size: N3)
l (vector-field size: N3), v (size: N)

1: for p = 0 to N − 1 do
2: vp = p - (p ≥ N/2) × N
3: end for

// See octave function: [v0,v1,v2]=ndgrid(v)

4: l← ndgrid(v)
// Subscript p,q,r on symbols denote array-index

5: for p = 1 to N do
6: for q = 1 to M do
7: for r = 1 to N3 do
8: apqr ← π/L × ρp/2 × (lr · σq)

// (·) denotes vector dot-product

9: end for
10: end for

// sinc(x) = sin(x)/x

// | · | denotes vector-magnitude

11: for r = 1 to N3 do
12: bpr ← bω,α ρ

γ+2
p × 4π× sinc(π/L × ρp/2 × |lr |)

13: cr ← cr + 16π2 bω,α (wρ)p × ρ
γ+2
p × sinc(π/L×ρp× |lr |)

14: end for
15: end for
16: return a,b,c

3. SAXPY: This performs the following algebraic operation

Z = α × X + Y (28)

where X,Y,Z are arrays, and α is scalar. This is used in step 10 of Algo. (2).
4. FXXY: This performs the following algebraic operation

Z = unaryOp(X) × Y (29)

where X,Y,Z are arrays, and unaryOp is some unary-function. This is used, for instance, in steps 4–7 of
Algo. (2). These types of cuda-kernels can be generated at compile-time either through templates or macro-
substitution.

5. SUM-REDUCE: Computes the reduced-sum using divide-and-conquer tree-reduction.

α =

length(X)∑
i=1

Xi (30)

where X is an array, and α is the reduced scalar.

The loops can be unrolled for explicit-vectorization (vectorized load/stores) hint to the compiler. We mention that
DG-operators, for instance gradient, consumes less than 1% of total computing time in Boltzmann equation (see [12]
for details GPU implementation of DG operators).

060001-7

Algorithm 2: Collision-Algorithm Pseudo-code [9]

Input: Number of points in each-direction of velocity mesh N, Distribution-functions F e
l1

and F e
l2

(size: N3), number
of points on half-sphere M, spherical quadrature weight wσ, Gauss quadrature-weights wρ (size: N),
precomputed variable a (size: MN × N3), precomputed variable b (size: N × N3), precomputed variable c (size:
N3)

Output: Q
Declare:
{t1,. . . ,t6}, Q, QGs (each size: N3), QG (size: MN4)

1: Compute forward FFT:
FTf← fft(F e

l1
)

FTg← fft(F e
l2

)
/* These loops can be collapsed using omp pragma, albeit with additional memory-needs */

// Subscript p,q on symbols denote array-index

// Inner-most loop r ∈ {1, . . . ,N3} has been ignored

2: for p = 1 to N do
3: for q = 1 to M do
4: t1← cos(apq) × FTf

// Note: These are array-operations over N3

5: t2← cos(apq) × FTg
6: t3← sin(apq) × FTf
7: t4← sin(apq) × FTg

// ifft denotes inverse FFT

8: t5← ifft(t1)×ifft(t2) + ifft(t3)×ifft(t4)
9: t6← fft(t5)

10: QGpq = 2 × (wρ)p × wσ × bp × t6
11: end for
12: end for
13: for p = 1 to N do
14: for q = 1 to M do
15: QGs += QGpq
16: end for
17: end for

// real returns real part of complex number

18: Q = real(ifft(QGs) - F e
l1

*ifft(c × FTg))
19: return Q

Benchmark Tests and Results

Bobylev-Krook-Wu (BKW) [25, 26], and Fourier heat transfer [27] problems are solved using the currently developed
solver. BKW provides exact solution to Boltzmann equation when the convective-part is absent. This is useful for
verification, computational-efficiency, and accuracy benchmarks. The second test-case i.e., Fourier heat-transfer, is
a standard rarefied gas flow problem in which a gas is trapped between two walls at different temperatures. The
gas-motion takes place as a result of this temperature-difference.

Hardware configuration
Serial and MPI-parallellized implementations are run on a 15-node cluster. Each node is equipped with two 12-
core Intel Xeon Gold 6126 CPU, and three Tesla-P100 GPU. The operating system used is 64-bit CentOS 7.4.1708
(Core). GPU-parallellized implementations of solver are run on the same machine with NVIDIA Tesla-P100 GPU
accompanying CUDA driver 8.0 and CUDA runtime 8.0. The GPU has 10752 CUDA cores, 16GB device memory,
and compute capability of 6.0. The solver has been written in C++/CUDA and is compiled using OpenMPI 1.8.5,
g++ 5.2.0, and nvcc 8.0.61 compiler with third level optimization flag. The benchmark-test are run using four solvers:

060001-8

a) CPU/serial variant, b) CPU/MPI/parallel variant, c) GPU/CUDA/serial variant, and d) GPU/CUDA/MPI/parallel
variant using CUDA-aware MPI. All the simulations are done with double precision floating point values.

BKW analytical solution
The accuracy and efficiency of implementation is evaluated by considering the standard benchmark case of Bobylev-
Krook-Wu (BKW) [25, 26] for Maxwell-molecules. BKW provides an exact solution to the the spatially homogeneous
Boltzmann equation for constant collision kernel. Equation (1), in the present case, simplifies to:

∂ f
∂t

= Q(f , f), t > 0, v ∈ R3 (31)

with the analytical solution expressed as

f (t, v) =
1

2 ∗ (2πK(t))3/2 exp
(
−

v2

2K(t)

) (
5K(t) − 3

K(t)
+

1 − K(t)
K2(t)

v2
)

(32)

where K(t) = 1−exp(−t/6). The initial time t0 must be greater than 6 ln(2.5) ≈ 5.495 for f to be positive. An arbitrary
time of t = 5.5 has been picked in the present work. The distribution function f given in Eq. (32) must satisfy Eq.
(31). Hence, the time-derivative of f yields

Q(f) =
∂ f
∂t

= K′
(
−

3
2K

+
v2

2K2

)
f +

[
1

2(2πK)3/2 exp
(
−

v2

2K

) (
3

K2 +
K − 2

K3 v2
)]

K′ (33)

where K′(t) = exp(−t/6)/6. By setting ω = 1, α = 1, Kn−1 = Γ(1.5) in the equation (5) and γ = 0, bω,α = 1 in
equations (25–27), one can compute the constant kernel BKW solution.

In principle, to quantify the numerical error resulting from fast spectral approximation, one can compare the
results obtained from the direct collision-operator evaluation procedure which requires O(N6) computations. Such
comparisons have been already provided in [9]. In particular, tables 1-2 of [9] compare the accuracy and efficiency of
the fast-spectral and the direct-spectral method. We refrain from repeating those results in the present work.

In the present section, we compare the L∞ error between the analytical solution (33), and the numerical solution
obtained using Algo. (2). Table 1 depicts the effect of velocity mesh-size on the error norm, and the speedup com-
parison between the CPU and GPU variants of the code. It is observed that the error exponentially decreases with
increase in number of points in the velocity domain. Overall, since the error is on order of 10−8, it indeed verifies that
the Collision-Algorithm (2) provides the solution to Boltzmann Collision-operator. While the errors are on order of
10−8, the actual error-norm value is dependent on several factors: a) the truncation of the infinitely-long velocity mesh
to a finite [−L, L]3 interval, b) the size [−L, L]3 of the finite velocity-mesh, c) number of points in the velocity-mesh,
d) choice of selected Gaussian quadrature, e) choice of spherical quadrature, f) finite precision round-off errors. The
convergence behavior as depicted in the table, is well-known characteristics of Fourier spectral method [8, 9]. Table
1 also depicts the timings for single-evaluation of collision kernel in double precision. On a single-GPU, the code
achieves a speedup of roughly 60-100x over the serial version of the code. For a fair comparison of speedup (CPU vs
GPU), the multi-GPU/multi-CPU benchmarks are described in the next section.

Fourier heat transfer
For general Boltzmann equation (1), analytical solutions do not exist. Therefore, we compare our results with widely-
accepted direct simulation Monte Carlo (DSMC) [21] method. We want to emphasize that DSMC is a stochastic-
method for solution of the N-particle master kinetic equation which converges to the Boltzmann equation in the limit
of infinite number of particles [28].

In the current test case, the coordinates are chosen such that the walls are parallel to the y direction and x is the
direction perpendicular to the plates similar to one shown in Fig. (1). The two parallel walls have been set H = 1×10−3

meter apart, where left and right walls are fixed to uw = (0 0 0) ms−1. The left wall i.e, cold junction temperature is fixed
at Tw = 263 K while the right wall i.e, hot junction temperature is fixed at 283 K. The reference (Tref) temperature
is taken as 273 K. The Knudsen numbers are fixed corresponding to the pressure of 4 Pa, and 8 Pa respectively 2.

2In rarefied gas-dynamics, two widely-used definitions of Knudsen number exist. The first definition is by Cercignani [5] which yields Knudsen
numbers of 1.582 and 0.791 respectively for the present case. The second definition is by Bird[21] (Eq. 5 in present work) which yields Knudsen
numbers of 1.22 and 0.61 respectively.

060001-9

TABLE 1. Weak scaling. The timings for collision kernel evaluation are
averaged for 90 runs. Error is defined as maximum of absolute differ-
ence between Qnumerical and Qexact normalized by Qexact i.e., ‖Qnumerical −

Qexact‖/‖Qexact‖L∞

Velocity Mesh Time (s) Speedup Error L∞
CPU GPU

20 × 20 × 20 0.1060 0.0052 20.38 0.00016982210
24 × 24 × 24 0.2681 0.0072 37.24 2.418682338e-05
32 × 32 × 32 0.8197 0.0151 54.28 5.234900906e-08
36 × 36 × 36 1.4470 0.0226 64.03 1.878435925e-08
48 × 48 × 48 4.8395 0.0647 74.80 1.875531057e-08
64 × 64 × 64 17.562 0.1932 90.90 1.876041262e-08
72 × 72 × 72 26.355 0.3064 86.02 1.875840274e-08

Argon with ω = 0.81, α = 1, and dref = 4.17× 10−10 m is taken as working gas. We refer the reader to [27] for DSMC
simulation parameters.

Verification

Figure (2) illustrates the temperature profile along the domain for different Knudsen numbers. The results are com-
pared against the DSMC simulations, where our method/implementation: a) matches well with DSMC, b) captures the
non-linear nature of temperature profiles in the near wall region, i.e., the Knudsen layer. The small discrepancies, in
the results, are primarily due to: a) statistical fluctuations inherent to the Monte Carlo methods, b) practical limitations
on number of particles used in DSMC simulations.

268

269

270

271

272

273

274

275

276

277

278

0 0.2 0.4 0.6 0.8 1

Kn=1
.582

Kn=0
.791

T
(K

)

x/H

DSMC
Present-work

FIGURE 2. Variation of Temperature along the domain for Kn = 0.791, and 1.582 using Variable-Hard-Sphere collision model for
Argon molecules obtained with DSMC and DGFS. The physical space consists of 20 cells and polynomial order of 3, and velocity
space consists of 323 points.

Solver-Performance

The simulations are carried out on 18 different test-cases with varying element-count (Ne), polynomial-approximation
order (Np = K − 1), and velocity-space sizes (N). The spatial elements are distributed to different processors using
the well-known domain-decomposition strategy. Each of these simulations involve at-least 100 billion floating-point
operations at each timestep (recall computational-complexity: NeK2LMN4 log(N)). Speed up obtained with multi-
GPU/multi-CPU based solver is presented in Table (2). The CPU/serial implementation is computationally too expen-

060001-10

TA
B

L
E

2.
Pe

rf
or

m
an

ce
of

th
e

G
PU

ba
se

d
so

lv
er

fo
r

Fo
ur

ie
r

he
at

-t
ra

ns
fe

r
te

st
ca

se
.

W
or

k
un

its
(±

10
se

co
nd

s)
re

pr
es

en
t

th
e

to
ta

l
si

m
ul

at
io

n
tim

e
fo

r
fir

st
10

tim
es

te
ps

.
T

he
ph

as
e-

sp
ac

e
is

de
fin

ed
us

in
g

a
co

nv
en

ie
nt

tr
ip

le
tn

ot
at

io
n

N
e/

K
/N

3 ,w
hi

ch
co

rr
es

po
nd

s
to

N
e

el
em

en
ts

in
ph

ys
ic

al
sp

ac
e,

K
or

de
r

D
G

(e
qu

iv
al

en
tly

N
p

=
K
−

1
or

de
r

po
ly

no
m

ia
lf

or
1-

D
do

m
ai

n)
,a

nd
N

3
po

in
ts

in
ve

lo
ci

ty
sp

ac
e.

nP
(n
>

1)
de

no
te

s
C

PU
/M

PI
/p

ar
al

le
le

xe
cu

tio
n

on
n

co
re

s
sh

ar
ed

eq
ua

lly
ac

ro
ss

(n
/2

4)
no

de
s.

Si
m

ila
rl

y,
1G

de
no

te
s

G
PU

/C
U

D
A

/s
er

ia
lv

ar
ia

nt
in

vo
ca

tio
n

on
si

ng
le

G
PU

.n
G

(n
>

1)
de

no
te

s
G

PU
/C

U
D

A
/M

PI
/p

ar
al

le
le

xe
cu

tio
n

on
n

G
PU

s
sh

ar
ed

eq
ua

lly
ac

ro
ss

(n
/3

)n
od

es
.S

pe
ed

up
is

de
fin

ed
as

ra
tio

A
/B

,w
he

re
A

an
d

B
ar

e
ex

ec
ut

io
n-

tim
es

on
de

si
gn

at
ed

nu
m

be
r

of
C

PU
s/

G
PU

s.
N
/A

de
no

te
s

th
e

te
st

-c
as

es
th

at
ar

e
pr

oh
ib

iti
ve

ly
ex

pe
ns

iv
e

on
de

si
gn

at
ed

nu
m

be
ro

fC
PU

s/
G

PU
s.

Ph
as

e
sp

ac
e

W
or

k
U

ni
ts

(s
)

Sp
ee

du
p

C
PU

G
PU

24
P

48
P

96
P

1G
3G

6G
12

G
24

G
24

P/
1G

96
P/

3G
48

P/
96

P
6G

/1
2G

38
4/

3/
20

3
40

2.
35

20
1.

99
10

1.
85

35
3.

42
12

4.
67

62
.5

9
31

.5
6

15
.8

5
1.

14
0.

82
1.

98
1.

98
38

4/
3/

32
3

29
36

.3
8

14
70

.7
4

74
8.

16
10

19
.5

6
34

4.
07

17
2.

37
86

.6
2

43
.5

1
2.

88
2.

17
1.

97
1.

99
38

4/
3/

48
3

N
/A

91
63

.4
0

51
56

.7
8

44
68

.6
1

14
93

.0
2

74
6.

75
37

4.
12

18
7.

92
N

/A
3.

45
1.

78
1.

99
38

4/
5/

20
3

11
40

.0
8

57
2.

09
28

6.
16

97
0.

19
34

1.
70

17
1.

55
86

.5
6

43
.9

8
1.

18
0.

84
1.

99
1.

98
38

4/
5/

32
3

81
92

.1
5

41
03

.2
0

20
56

.4
3

28
35

.9
6

94
5.

45
47

3.
04

23
6.

97
11

8.
53

2.
89

2.
18

1.
99

1.
99

38
4/

5/
48

3
N

/A
25

07
1.

90
12

81
4.

90
N

/A
41

41
.6

7
20

72
.6

2
10

36
.7

1
51

8.
59

N
/A

3.
09

1.
96

1.
99

76
8/

3/
20

3
81

8.
49

40
9.

39
20

5.
84

71
3.

97
24

5.
03

12
5.

68
63

.7
5

31
.9

8
1.

15
0.

84
1.

99
1.

97
76

8/
3/

32
3

59
33

.4
0

29
70

.4
9

14
92

.6
7

20
54

.5
5

68
7.

74
34

4.
17

17
3.

30
86

.9
2

2.
89

2.
17

1.
99

1.
99

76
8/

3/
48

3
N

/A
18

33
3.

10
10

45
4.

30
89

40
.7

9
29

87
.4

3
14

94
.2

1
74

8.
28

37
5.

01
N

/A
3.

50
1.

75
1.

99
76

8/
5/

20
3

22
73

.0
4

11
54

.9
9

57
8.

94
19

37
.4

2
68

2.
22

34
5.

72
17

2.
87

86
.9

0
1.

17
0.

85
1.

99
1.

99
76

8/
5/

32
3

16
50

8.
70

83
09

.9
1

41
58

.4
2

56
59

.8
4

18
91

.0
2

94
6.

20
47

3.
28

23
7.

73
2.

92
2.

20
1.

99
1.

99
76

8/
5/

48
3

N
/A

51
01

6.
50

25
72

5.
50

N
/A

82
87

.7
0

41
46

.8
9

20
74

.3
1

10
37

.8
4

N
/A

3.
10

1.
98

1.
99

15
36
/3
/2

03
16

29
.4

7
81

9.
28

42
1.

58
14

64
.4

6
49

0.
44

24
8.

93
12

6.
53

63
.6

2
1.

11
0.

86
1.

94
1.

97
15

36
/3
/3

23
11

90
3.

40
59

57
.4

6
30

28
.5

9
41

24
.5

1
13

80
.9

5
69

0.
78

34
5.

60
17

2.
93

2.
89

2.
19

1.
97

1.
99

15
36
/3
/4

83
N

/A
36

73
4.

01
18

44
9.

30
17

88
3.

99
59

67
.7

4
29

86
.4

2
14

95
.5

2
74

8.
79

N
/A

3.
09

1.
99

1.
99

15
36
/5
/2

03
46

03
.0

9
23

57
.8

3
11

86
.0

3
39

31
.9

4
13

34
.2

9
68

0.
51

34
4.

22
17

2.
63

1.
17

0.
89

1.
99

1.
98

15
36
/5
/3

23
32

66
8.

90
16

40
6.

30
84

92
.4

4
11

33
6.

84
37

81
.3

4
18

92
.3

9
94

7.
18

47
4.

32
2.

88
2.

25
1.

93
1.

99
15

36
/5
/4

83
N

/A
N

/A
53

27
7.

60
N

/A
16

57
1.

46
82

89
.5

6
41

48
.4

4
20

78
.0

9
N

/A
3.

22
N

/A
1.

99

060001-11

TABLE 3. Parallel efficiency of the GPU/MPI implementation. Velocity mesh
is fixed to N3 = 203 with M = 6, and DG-order to K = 3. Here g and Ne denote
the GPU count, and number of elements in physical-space respectively.

g = 1
(1 core)

g = 3
(1 node)

g = 6
(2 nodes)

g = 12
(4 nodes)

g = 24
(8 nodes)

Ne = 384 1.00 0.9449 0.9411 0.9332 0.9290
Ne = 768 1.00 0.9713 0.9468 0.9333 0.9302
Ne = 1536 1.00 0.9953 0.9805 0.9645 0.9591

TABLE 4. Performance on billion grid-point phase spaces.
The notations remain the same as in Table 2. Work units
(± 10 seconds) represent the total simulation time for first
5 timesteps.

Phase space Work Units (s) Speedup

30G
(10 nodes)

42G
(14 nodes) 30G/42G

40320/3/203 658.47 470.96 1.398
40320/3/323 1815.13 1296.63 1.399
40320/3/483 7844.28 5605.33 1.399

sive for the large size of phase-space considered in the benchmarks, and therefore have been omitted. As evident from
the table, the acceleration due to GPU parallelization increases with increase in the size of computational grid. More
specifically, the increase in Ne and K have small-effect on overall speedup which suggests that DG-operators (for
instance derivative, time-evolution) are rather computationally-inexpensive operations. On the other hand, increase
in velocity-grid drastically increases the speedup by a factor of 1.5–2. Increasing the velocity-mesh further, should
increase the speedup as was observed in BKW-case in Tab. (1). On a single GPU, the implementation achieves a
speedup of roughly 2–3x over the MPI-parallelized code running on 24 cores (1 node). On three GPUs of a single
node, the implementation achieves a speedup of 0.8–4x over the MPI-parallelized code running on 96 cores (4 nodes).
The strong scaling behavior for this case has been depicted in Fig (3).

1

3

6

12

24

1 3 6 12 24

Sp
ee

du
p

GPU count

384/3/203

384/3/323

384/3/483

768/3/203

768/3/323

768/3/483

1536/3/203

1536/3/323

1536/3/483

FIGURE 3. Strong scaling for Fourier heat transfer test case. Both the axes are on logarithmic scale.

Table (3) presents the parallel efficiency of the GPU/MPI implementation. The methodology presented in the
current work exhibits excellent nearly-linear scaling characteristics. The effects of off-node communication do exist,
but in the present case, are small. The off-node communication should be more apparent in simulations that use large
number of nodes. We want to emphasize that the amount of computations is very high in our simulations. These

060001-12

simulations are more memory-bound and less I/O bound. The use of a “communication-free” collision integral that
consumes more than 99% of total computational time, and “minimal-communication” DG method, both ensure that
the I/O overhead is low. An important key observation is that the efficiency can be maintained provided we have
enough work on each processor – one of the characteristics of scalable algorithms.

We further increased the size of phase space to billion grid points. Table (4) shows the performance of the solver
on 14 and 12 nodes. The largest case requires nearly 100 trillion floating point calculations at every timestep. The
speedup obtained is found to be proportional to the ratio of number of GPUs employed in computation (42/30 = 1.4).

Similar speedups and scaling behavior is observed for 2D/3D domains consisting of triangles, tetrahedrons,
quadrilaterals, hexahedrons, prisms, and pyramids. Due to relatively large size of the present manuscript, they have
been omitted here. A speedup of this magnitude, now enables us (and fellow researchers) to solve problems within a
day that would otherwise take months on traditional CPU architectures. More importantly, It opens up the opportunity
to explore family of Boltzmann equations, for instance, Vlasov-Fokker-Plank-Maxwell equations needed in plasma
modelling, or Quantum-Boltzmann in semiconductor modelling, or Acoustic-Boltzmann, all of which still remain
relatively unexplored for general 2D/3D problems.

Conclusions

We have presented a high-order discontinuous Galerkin fast spectral formulation for solving full Boltzmann equation
on GPUs. The DG-type formulation employed in the present work has advantage of having high-order accuracy at
the element-level, and its element-local compact nature (and that of our collision algorithm) enables effective paral-
lelization on massively parallel architectures. For verification and benchmarks, we carry out spatially homogeneous
BKW, and Fourier heat-transfer simulations. Speedups on order of 10–100x, and parallel efficiency close to 0.95 are
observed on a multi-node multi-CPU/multi-GPU system. An important key observation is that the efficiency can be
maintained provided we have enough work on each processor–one of the characteristics of scalable algorithms.

While the speedup observed in the present work are promising, our experience shows that even heavily tuned
codes can be further improved. We want to emphasize that the multi-CPU (CPU/MPI) test-cases in the present work
have been run on Intel Xeon-Gold. The higher-end Xeon-Phi series can further improve the observed speedup. It would
be interesting to see how the method performs beyond thousand cores. Extending the implementation to general mixed
grids coupled with adaptivity in physical and velocity spaces, is an interesting direction as well. Yet another future
direction, would be extending the implementation for family of Boltzmann equations, for instance, Vlasov-Fokker-
Plank equations for plasma modelling.

Acknowledgment

J. Hu’s research was supported by NSF grant DMS-1620250 and NSF CAREER grant DMS-1654152.

REFERENCES

[1] S. Jaiswal, A. Alexeenko, and J. Hu, Journal of Computational Physics 378, 178–208 (2019).
[2] R. H. Pletcher, J. C. Tannehill, and D. Anderson, Computational fluid mechanics and heat transfer (CRC

Press, 2012).
[3] J. Slotnick, M. Kandula, and P. Buning, “Navier-stokes simulation of the space shuttle launch vehicle flight

transonic flowfield using a large scale chimera grid system,” in 12th Applied Aerodynamics Conference
(1994) p. 1860.

[4] S. E. Rogers, D. J. Dalle, and W. M. Chan, “CFD simulations of the space launch system ascent aerodynam-
ics and booster separation,” in 53rd AIAA Aerospace Sciences Meeting (2015) p. 0778.

[5] C. Cercignani, The Boltzmann Equation and Its Applications (Springer-Verlag, New York, 1988).
[6] C. Bardos, F. Golse, and D. Levermore, Journal of statistical physics 63, 323–344 (1991).
[7] F. Bouchut, F. Golse, and M. Pulvirenti, Kinetic equations and asymptotic theory (Elsevier, 2000).
[8] L. Pareschi and G. Russo, SIAM J. Numer. Anal. 37, 1217–1245 (2000).
[9] I. Gamba, J. Haack, C. Hauck, and J. Hu, SIAM J. Sci. Comput. 39, B658–B674 (2017).

[10] J. S. Hesthaven and T. Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and appli-
cations (Springer Science & Business Media, 2007).

060001-13

https://doi.org/10.1016/j.jcp.2018.11.001
https://doi.org/10.1007/BF01026608
https://doi.org/10.1137/S0036142998343300
https://doi.org/10.1137/16M1096001

[11] R. Biswas, K. D. Devine, and J. E. Flaherty, Applied Numerical Mathematics 14, 255–283 (1994).
[12] A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven, Journal of Computational Physics 228, 7863–

7882 (2009).
[13] E. P. Gross and E. A. Jackson, The physics of fluids 2, 432–441 (1959).
[14] P. L. Bhatnagar, E. P. Gross, and M. Krook, Physical review 94, p. 511 (1954).
[15] L. H. Holway Jr, Physics of Fluids (1958-1988) 9, 1658–1673 (1966).
[16] A. Alexeenko, C. Galitzine, and A. Alekseenko, “High-order discontinuous galerkin method for boltzmann

model equations,” in 40th Thermophysics Conference (2008) p. 4256.
[17] W. Su, A. A. Alexeenko, and G. Cai, Computers & Fluids 109, 123–136 (2015).
[18] L. Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhang, Journal of Computational Physics 250, 27–52

(2013).
[19] L. Mieussens, “A survey of deterministic solvers for rarefied flows,” in Proceedings of the 29th International

Symposium on Rarefied Gas Dynamics, AIP Conf. Proc, Vol. 1628 (2014), pp. 943–951.
[20] G. Dimarco and L. Pareschi, Acta Numer. 23, 369–520 (2014).
[21] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Clarendon Press, Oxford,

1994).
[22] S. Gottlieb, D. Ketcheson, and C.-W. Shu, Strong Stability Preserving Runge-Kutta and Multistep Time

Discretizations (World Scientific, 2011).
[23] R. S. Womersley, in Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian

Sloan (Springer, 2018), pp. 1243–1285.
[24] A. R. Brodtkorb, T. R. Hagen, and M. L. Sætra, Journal of Parallel and Distributed Computing 73, 4–13

(2013).
[25] A. Bobylev, “Exact solutions of the boltzmann equation,” in Akademiia Nauk SSSR Doklady, Vol. 225 (1975),

pp. 1296–1299.
[26] M. Krook and T. T. Wu, The Physics of Fluids 20, 1589–1595 (1977).
[27] M. Gallis, D. Rader, and J. Torczynski, Physics of Fluids 14, 4290–4301 (2002).
[28] A. Alexeenko and S. Gimelshein, in The Handbook of Fluid Dynamics, edited by R. Jonhson (CRC Press

Boca Raton, FL, 2016), pp. 39:1–40.

060001-14

https://doi.org/10.1016/0168-9274(94)90029-9
https://doi.org/10.1016/j.jcp.2009.06.041
https://doi.org/10.1063/1.1724415
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1016/j.jcp.2013.05.003
https://doi.org/10.1017/S0962492914000063
https://doi.org/10.1016/j.jpdc.2012.04.003
https://doi.org/10.1063/1.861780
https://doi.org/10.1063/1.1518692
https://doi.org/10.1063/1.1761920
https://doi.org/10.1016/j.compfluid.2014.12.015

