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ABSTRACT
When the flow is sufficiently rarefied, a temperature gradient, for example, between two walls separated by a few mean free paths, induces
a gas flow—an observation attributed to the thermostress convection effects at the microscale. The dynamics of the overall thermostress
convection process is governed by the Boltzmann equation—an integrodifferential equation describing the evolution of the molecular distri-
bution function in six-dimensional phase space—which models dilute gas behavior at the molecular level to accurately describe a wide range
of flow phenomena. Approaches for solving the full Boltzmann equation with general intermolecular interactions rely on two perspectives:
one stochastic in nature often delegated to the direct simulation Monte Carlo (DSMC) method and the others deterministic by virtue. Among
the deterministic approaches, the discontinuous Galerkin fast spectral (DGFS) method has been recently introduced for solving the full
Boltzmann equation with general collision kernels, including the variable hard/soft sphere models—necessary for simulating flows involving
diffusive transport. In this work, the deterministic DGFS method, Bhatnagar-Gross-Krook (BGK), Ellipsoidal statistical BGK (ESBGK), and
Shakhov kinetic models, and the widely used stochastic DSMC method, are utilized to assess the thermostress convection process in micro
in-plane Knudsen radiometric actuator—a microscale compact low-power pressure sensor utilizing the Knudsen forces. The BGK model
underpredicts the heat-flux, shear-stress, and flow speed; the S-model overpredicts; whereas, ESBGK comes close to the DSMC results. On the
other hand, both the statistical/DSMC and deterministic/DGFS methods, segregated in perspectives, yet, yield inextricable results, bespeaking
the ingenuity of Graeme Bird who laid down the foundation of practical rarefied gas dynamics for microsystems.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5108665., s

I. INTRODUCTION

In microscale flows, the length scale dictates the type of forces
governing the physical phenomena. The surface to the volume ratio
is high and hence the surface forces dominate. The Reynolds num-
ber is low and the viscous shear stresses are significantly increased.1

Under sufficiently rarefied flow conditions, an application of tem-
perature gradient, say, between two parallel plates separated by
few mean free paths, induces a low velocity gas flow commonly
identified as thermostress convection effects.2 A necessary condi-
tion to induce a sufficiently useful gaseous velocity requires the
characteristic length scale of the thermal gradients T/|∇xT| to be
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comparable to the molecular mean free path λ. At the macroscale,
such magnitudes are prohibitive, necessitating thermal gradients on
the order of 106 K/m. However, at the microscale, such conditions
are readily achieved allowing the thermostress effects to overcome
the classically dominant viscous forces.3

From a historical and experimental viewpoint, Knudsen, in
1910, explored the possibility of gas actuation under the influence
of temperature gradients using evacuated glass bulbs separated by
a long narrow tube, wherein heating one of the bulbs resulted in
a pumping action creating a high pressure at the hot end and low
pressure at the cold end.4,5 In 1950s,6 Knudsen carried out various
experiments using Crooke’s radiometer,7 wherein a device consist-
ing of a long thin and narrow platinum band with dark (hot) and
bright (cold) sides, in a rarefied environment, exhibits a net force due
to momentum imbalance of particles reflecting from the dark and
bright sides. Without being exhaustive, we refer to Ref. 8 for a com-
prehensive review of the radiometric phenomenon. From a theoret-
ical viewpoint, Maxwell hypothesized that one of the possible causes
of radiometric effects are temperature stresses. However, based on
linearized kinetic theory and corresponding reduced macroscopic
equations of motion (see Sec. 15 in Ref. 9), the author concluded
that no motion can be produced by temperature stresses,2,9 which,
in general, is incorrect. Later, Kogan, in 1976, introduced the theory
of thermostress convection, wherein the bulk velocity is attributed
to the presence of higher order terms of temperature stresses [see
Eq. (2.6) in Ref. 2], arrived in part by the second order Chapman-
Enskog expansion commonly identified as the Burnett approxima-
tions. In the multispecies context, however, the phenomenon and
the effect of thermostress convection on the flow concentration (and
the subsequent induced velocity) is more apparent.

Chapman,10 as early as 1953, developed the theory of diffusion
processes [see Eq. (8.4, 7) in Ref. 10 again derived using Chapman-
Enskog expansion] wherein the difference in concentrations of two
species is proportional to the thermal gradient term kT∇ ln T, where
kT is the thermal diffusion factor. At normal conditions, this coef-
ficient is very low and is therefore not accounted for in practice.
For instance, as a classical example, Bird11 devised a self-diffusion
test case (see Sec. 12.6) where the diffusion coefficient was mea-
sured by ignoring the thermal gradient term kT∇ ln T of Eq. (8.4,
7) in Ref. 10. Note, however, that there is considerable thermal gra-
dient in self-diffusion cases; see for instance Ref. 12, where we pre-
sented the results for temperature variation for self-diffusion cases.
Although the temperature gradient is unaccounted for, the diffu-
sion coefficient, which is measured by a self-diffusion simulation,
matches well with the experimentally10 observed diffusion coeffi-
cient. This suggests that kT is potentially low—which is indeed the
case, for instance, see Ref. 13, wherein the authors noted thermal
diffusion coefficient on order of 10−3. In microscale flows where the
per unit temperature drop can easily reach 106 K/m, as noted earlier,
kT∇ ln T can have appreciable contributions. This type of process
has been interpreted in terms of thermostress convection due to
concentration inhomogeneities by Kogan.2 The overall thermostress
convection phenomenon/effect is highly coupled and exhibits highly
rich flow structures (as will be shown in Sec. IV C), and an in-depth
understanding can prove to be very useful for development of next
generation of microsystems.

To summarize, Sone14 identified three broad groups of the
temperature driven flow based on its application in microsystems:

(a) thermal creep flow15–17 which is an induced flow around a body
with nonuniform temperature; (b) thermal stress slip flow, which
is induced by nonuniform temperature gradient over the bound-
ary;2,18–23 and (c) nonlinear thermal stress flow,2 which is important
only when the temperature gradient in the gas is high, and nonlinear
terms of temperature variations in stress tensor should be taken into
account. The present study is delegated to the third, i.e., nonlinear
thermal stress flow.

From a practical engineering viewpoint, thermostress convec-
tion has been applied for microstructure actuation. Passian,24,25 in
2003, demonstrated a microcantilever suspended over a substrate,
which when heated via a pulsed laser generated deflections at the
cantilever tip as a consequence of the Knudsen forces in the gap
between the substrate and microcantilever. Foroutan,26 in 2014,
demonstrated untethered levitation in concave microflying robots
relying on the Knudsen force. The phenomenon has been further
explored in small satellite and spacecraft attitude control devices27

and high-altitude propulsion systems.28

The dynamics of the overall thermostress convection process is
governed by the Boltzmann equation—an integrodifferential equa-
tion describing the evolution of the distribution function in six-
dimensional phase space—which models the dilute gas behavior
at the molecular level to accurately describe a wide range of non-
continuum flow phenomena. In the present work, we assess the
thermostress convection process using the fundamental microscopic
full Boltzmann equation. The approaches for numerical solution
of the Boltzmann equation date back to as early as the 1940s.29

However, it was not until the 1960s that the numerical simulations
were feasible. In practice, the numerical simulations of the Boltz-
mann equation were made possible by the introduction of direct
simulation Monte Carlo (DSMC) method.11,30 Over sufficient small
intervals, by decoupling the molecular motion and interaction pro-
cesses, DSMC first advects the particles deterministically according
to their velocities, also termed free transport, and then describes
the collisions by statistical models with a specified interaction
potential.

The choice of the interaction potential substantially affects the
simulation fidelity and computational complexity. Early implemen-
tations of the DSMC method relied on the purely repulsive hard
sphere (HS) interaction model.30 The HS model, however, devi-
ates from experimental observations for common gases31 due to a
square-root viscosity variation with temperature. The variable hard
sphere (VHS) model proposed by Bird11 results in a more general
power-law viscosity variation with temperature and has been widely
used for DSMC simulations of single-species gas flows due to its com-
putational efficiency and ease of implementation. The VHS model,
however, deviates from experimental observations for common mul-
tispecies flows32,33 involving diffusive transport. Later, several varia-
tions of the VHS model were proposed, including, the variable soft
sphere (VSS),33 M-1,34 generalized soft sphere (GSS),35 all of which
belong to a class of repulsive interactions. The VSS model modifies
the scattering law of the VHS model by using a scattering parame-
ter (α) that allows reproduction of measured diffusion coefficients
in addition to the viscosity coefficient. The M-1 model is a modifi-
cation of the VHS model to have a linear distribution of scattering
angles in terms of the impact parameter. This modification allows
M-1 to reproduce correct viscosity and diffusivity without the need
of an additional parameter (α).36 The GSS model, although general,
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FIG. 1. A holistic view of growth in DSMC publications over years; and the
exponential increase in number of simulated collision events per hour.

needs additional parameters for reproducing the viscosity and diffu-
sion coefficients (see Refs. 11 and 37 for additional details/equations
for these models). In particular, the complexity of the DSMC algo-
rithm is independent of the number of species in the mixture, as
well as the mass of the individual species. This makes the method
highly useful and efficient for modeling sufficiently fast2 nonequi-
librium flows. From a usage perspective, there is a growing number
of applications requiring DSMC simulations. Statistics (see Fig. 1)
show that over 1000 papers on DSMC are now published every year.
Many of these papers are based on the codes made available to the
research community in the 1990s by Bird. Over the years—in accor-
dance with the predictions of Moore’s law—the number of collisions
performed per hour have increased exponentially.

However, it is the stochastic nature of the DSMC that intro-
duces high statistical noise in low-speed flows. In the present
work, we study the thermostress convection process using the
recently developed deterministic discontinuous Galerkin fast spec-
tral (DGFS) method12,38 as well as DSMC: the primary tool for rar-
efied flow simulations. DGFS allows arbitrary unstructured geome-
tries; high order accuracy in physical space time, and velocity space;
arbitrary collision kernels, including, the well-known VSS model12

and provides excellent nearly linear scaling characteristics on mas-
sively parallel architectures.39,40 DGFS produces noise-free solu-
tions and can simulate low-speed flows encountered in thermostress
convection dominated devices.

From a flow modelling viewpoint, Loyalka,41 using a linearized
Boltzmann equation, calculated the longitudinal and transversal
Knudsen forces on the cylindrical surfaces of a hanging wire of a vac-
uum microbalance. The authors noted the Knudsen force maximum
in the transitional regime for helium–an observation attributed to
the bimodal nature of radiometric forces.42 Fierro43 studied the
problem using a Bhatnagar-Gross-Krook (BGK) model for the range
of Knudsen numbers and different molecular species noting an
inverted parabolic profile for variation of Knudsen force with pres-
sure (which can be reinterpreted in terms of Knudsen number since
a fixed size geometry was used for all cases). The authors observed a
peak Knudsen force in the 10–100 N/m2 pressure range for helium,
krypton, hydrogen, oxygen, and carbon dioxide. Alexeenko44 car-
ried out numerical simulations around heated microbeams using the
conventional Navier-Stokes incorporating the first order Maxwell

slip and Smoluchowski temperature jump boundary conditions,
DSMC, and primarily using a deterministic kinetic ellipsoidal sta-
tistical Bhatnagar-Gross-Krook (ESBGK) model employing a finite-
difference-discrete-velocity scheme. The gas-damping coefficients
on a moving microbeam for quasistatic isothermal conditions were
estimated by the three numerical methods for Knudsen numbers
from 0.1 to 1.0. It was concluded that the Navier-Stokes simula-
tions overestimate the gas-damping force for Knudsen numbers
larger than 0.1, while the ESBGK and DSMC methods are in good
agreement for the slip and transitional flow regimes. Moreover, the
Knudsen force peaks in the transitional regime at Kn ≈ 2, and the
numerically predicted variation of the force is consistent with exper-
imental observations of the displacement of a heated micro-beam.
Zhu45 analyzed the problem specifically using DSMC in the slip,
transition, and free molecular regimes noting qualitative agreements
between DSMC and experimental results of Passian.24,25 Nabeth46

analyzed the problem using the ESBGK model within a finite volume
framework. Notably, the authors devised a semiempirical relation
between the force and the Knudsen number based on dynamic sim-
ilarity. Anikin47 studied the radiometric forces via a direct solution
of the Boltzmann equation on 2-D velocity grids via a discrete ordi-
nate projection method.48 More recently, Lotfian49 analyzed the var-
ious arrangements for radiometric pumps featuring vane and ratchet
structures, including, zigzag triangular fins, using DSMC and the
finite volume based BGK-Shakhov model.

In more complex scenarios, one can stack an array of micro-
heaters to significantly enhance the Knudsen force output.3,50,51

Strongrich51 demonstrated the possibility of amplifying the Knud-
sen forces as well as reversing its direction by combining ther-
mal gradients between several solid bodies. The idea was further
explored, resulting in the development of a Microscale In-Plane
Knudsen Radiometric Actuator (MIKRA) sensor for flow actuation
and measurement.3,52,53 MIKRA consists of an array of hot and cold
microbeams termed the heater and shuttle arm. When the heater
arm is heated under the application of an electric current, the Knud-
sen force is generated in the gap between the shuttle and heater
arm. The displacement of the shuttle arm is then measured using
a capacitor (specific details to follow in Sec. IV). MIKRA presents
an interesting problem for analyzing thermostress convection due
to temperature gradients as well as concentration inhomogeneties;
see Ref. 54 where authors observed species separation in MIKRA
which might be, in part, due to be the effect of the kT∇ ln T term.
We believe it is too early to make a definite conclusion on the
topic.

A key question, and a subject of ongoing research is the
following: How well can the kinetic equations/methods/models,
for instance, the McCormack model,55 Lattice Boltzmann method
(LBM),56 Bhatnagar-Gross-Krook (BGK),57–61 Ellipsoidal statistical
Bhatnagar-Gross-Krook (ESBGK),62,63 BGK-Shakhov (S-model),64

Unified Gas Kinetic Scheme (UGKS),65,66 Discontinuous Galerkin
Fast Spectral (DGFS),38 and direct simulation Monte Carlo
(DSMC),11 describe the thermostress convection process, includ-
ing, their applicability regimes at a wide range of rarefaction lev-
els and temperature gradients, and required computational cost
for reproducing the correct induced low speed velocity profile on
common standard benchmark problems such as MIKRA where the
experimental results are readily available. As noted by Kogan,2 the
overall thermostress convection process is complicated function of
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concentration, of mass-ratio, molecule-collision cross section, etc.
An in-depth understanding of the overall thermostress convec-
tion process at the microscale may potentially prove useful for
development of a series of new MEMS devices without any mov-
ing parts (see, for instance, Refs. 52 and 67). This paper, in part,
focuses on quantifying the fidelity of results recovered from BGK,
ESBGK, S-model, DGFS and DSMC for the Knudsen radiometric
actuator MIKRA. To the best of our knowledge, analysis of sin-
gle/multispecies complex flows such as MIKRA has not been carried
out using deterministic full Boltzmann.

Finally, we mention that there is another class of low-speed gas
flow problems which appears within the context of gas damping:68,69

an effect generally observed in radio frequency (RF) switches70

which are used in radar systems, wireless communication systems,
and other instrumentation fields. Gas damping sharply influences
the dynamic behavior of MEMS devices, including, mechanical qual-
ity factors of microfabricated resonators, switching time, impact
velocity, and bounceback of contacting MEMS.71 A commonly iden-
tified trade-off in gas damping is as follows: the gas damping must be
minimized to achieve high sensitivity of MEMS, such as resonators,
and it must be maximized to mitigate the shock response and tran-
sient performance of MEMS. This is yet another class of problems
where the fidelity of different modelling approaches, in particular,
the deterministic ones, can be tested.

The rest of this paper is organized as follows. In Sec. II, we give
an overview of the multispecies Boltzmann equation, the self/cross
collision integrals, and the phenomenological VHS/VSS collision
kernels used in practical engineering applications. Extensive numer-
ical verification for the BGK, ESBGK, S-model, and DGFS against
DSMC are performed and discussed in Sec. III. Section IV provides
the description, problem statement, and results for the thermostress
convection enabled MIKRA sensor. Section V presents the analy-
sis of multispecies thermostress convection in the MIKRA sensor.
Concluding remarks are given in Sec. VI.

II. BOLTZMANN EQUATION
In this section, we give a brief overview of the multispecies

Boltzmann equation. Readers are referred to Ref. 12 for more details.
Suppose we consider a gas mixture of s species (s ≥ 2), each

represented by a distribution function f (i)(t, x, v), where t ≥ 0 is the
time, x ∈ Ω ⊂ R3 is the position, and v ∈ R3 is the particle velocity
[f (i)dxdv gives the number of particles of species i to be found in an
infinitesimal volume dxdv centered at the point (x, v) of the phase
space]. The time evolution of f (i) is described by the multispecies
Boltzmann equation written as72,73

∂t f (i) + v ⋅ ∇x f (i) =
s

∑
j=1

Q(ij)( f (i), f (j)
), i = 1, . . . , s. (1)

Here Q(ij) is the collision operator that models the binary collisions
between species i and j, and acts only in the velocity space

Q(ij)( f (i), f (j)
)(v) =∫

R3 ∫S2
Bij(v − v∗, σ)[f (i)(v′)f (j)

(v′∗)

− f (i)(v)f (j)
(v∗)]dσ dv∗, (2)

where (v, v∗) and (v′, v′∗) denote the precollision and postcolli-
sion velocity pairs. During collisions, the momentum and energy are
conserved

miv + mjv∗ = miv
′ + mjv

′

∗,

mi∣v∣
2 + mj∣v∗∣

2
= mi∣v

′
∣
2 + mj∣v

′

∗∣
2,

(3)

where mi, mj denote the mass of particles of species i and j, respec-
tively. Hence, one can parameterize v′ and v′∗ as follows:

v′ =
v + v∗

2
+
(mi −mj)

2(mi + mj)
(v − v∗) +

mj

(mi + mj)
∣v − v∗∣σ,

v′∗ =
v + v∗

2
+
(mi −mj)

2(mi + mj)
(v − v∗) −

mi

(mi + mj)
∣v − v∗∣σ,

(4)

with σ being a vector varying on the unit sphere S2. Bij = Bji(≥

0) is the collision kernel characterizing the interaction mechanism
between particles. It can be shown that

Bij = Bij(∣v − v∗∣, cos χ), cos χ =
σ ⋅ (v − v∗)
∣v − v∗∣

, (5)

where χ is the deviation angle between v − v∗ and v′ − v′∗.
Given the interaction potential between particles, the specific

form of Bij can be determined using the classical scattering theory

Bij(∣v − v∗∣, cos χ) = ∣v − v∗∣Σij(∣v − v∗∣, χ), (6)

where Σij is the differential cross section given by

Σij(∣v − v∗∣, χ) =
bij

sin χ
∣
dbij

dχ
∣, (7)

with bij being the impact parameter.
With a few exceptions, the explicit form of Σij can be hard

to obtain since bij is related to χ implicitly. However, as stated in
the Introduction, the choice of the interaction potential substan-
tially affects the simulation fidelity and computational complexity.
Proposed as a modification of the Bird’s VHS model, Koura and
Matsumoto33 introduced the so-called VSS model by assuming

χ = 2 cos−1
{(bij/dij)

1/αij}, (8)

where αij is the scattering parameter and dij is the diameter borrowed
from the VHS model [Eq. (4.79) in Ref. 11]

dij = dref,ij

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

2kBTref,ij

μij∣v − v∗∣2
⎞

⎠

ωij−0.5
1

Γ(2.5 − ωij)

⎤
⎥
⎥
⎥
⎥
⎦

1/2

, (9)

with Γ being the Gamma function, μij =
mimj

mi+mj
the reduced mass,

dref,ij, Tref,ij, and ωij, respectively, the reference diameter, reference
temperature, and viscosity index. Substituting Eqs. (7)–(9) into (6),
one can obtain Bij as

Bij = bωij , αij ∣v − v∗∣
2(1−ωij) (1 + cos χ)αij−1, (10)

where bωij , αij is a constant given by

bωij , αij =
d2

ref,ij

4
⎛

⎝

2kBTref,ij

μij

⎞

⎠

ωij−0.5
αij

Γ(2.5 − ωij) 2αij−1 . (11)
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In particular, the VHS kernel is obtained when αij = 1 and 0.5 ≤ ωij
≤ 1 (ωij = 1: Maxwell molecules; ωij = 0.5: HS) and the VSS kernel is
obtained when 1 < αij ≤ 2 and 0.5 ≤ ωij ≤ 1.

Given the distribution function f (i), the number density, mass
density, velocity, and temperature of species i are defined as

n(i) = ∫
R3

f (i) dv, ρ(i) = min(i),

u(i) =
1

n(i) ∫R3
vf (i) dv,

T(i) =
mi

3n(i)kB
∫
R3
(v − u(i))2f (i) dv.

(12)

The total number density, mass density, and velocity are given by

n =
s

∑
i=1

n(i), ρ =
s

∑
i=1

ρ(i), u =
1
ρ

s

∑
i=1

ρ(i)u(i). (13)

Furthermore, the diffusion velocity, stress tensor, and heat flux
vector of species i are defined as

v
(i)
D =

1
n(i) ∫R3

cf (i) dv = u(i) − u,

P(i) = ∫
R3

mic⊗ cf (i) dv, q(i) = ∫
R3

1
2

mic∣c∣2f (i) dv,

where c = v − u is the peculiar velocity. Finally, the total stress, heat
flux, pressure, and temperature are given by

P =
s

∑
i=1

P(i), q =
s

∑
i=1

q(i), p = nkBT =
1
3

tr(P). (14)

A. Stochastic modelling
From a stochastic viewpoint, DSMC, as introduced by Bird,11,30

incorporates four principal steps: (a) index, (b) move, (c) collide,
and (d) sample. The flowchart of a standard DSMC algorithm is
illustrated in Fig. 2. DSMC uses a spatial grid to contain the sim-
ulated molecules and perform sampling. The algorithm starts with
the distribution of molecules in the spatial domain according to
the prespecified initial condition: bulk velocity uini, temperature
Tini, and number densities n(i)ini . The individual molecules must be
tracked, and therefore an indexing mechanism is used to track which
molecules are in which cell of the spatial domain. Repeated calling of
the index subroutine is necessitated by molecular movement.

The move subroutine moves each molecule according to their
velocity a distance appropriate for the specified time step. This
velocity is assumed constant over each time step. The velocity of
a molecule is changed either by external forces, such as electro-
static forces, or by the scattering resulting from a collision. In the
absence of external forces, the velocity will only change as a result
of a collision. In the present work, we consider elastic collisions, i.e.,
collisions in which the total kinetic energy is unchanged.

The collide subroutine randomly selects a pair of molecules to
collide using the acceptance-rejection method.11,37 The collision is
accepted with a probability

P =
∣v − v∗∣Σij

(∣v − v∗∣Σij)max
, (15)

where (∣v − v∗∣Σij)max is the maximum, effective volume swept out
by a molecule. This maximum value is recorded in each cell such
that each cell may have a separate collision frequency. Taking this
into account, the goal of the collide is to determine scattering angles
and postcollision energies, as well as to obtain correct collision
frequencies and microscopic properties.

Finally, sample performs sampling over all cells to determine
macroscopic properties. The microscopic properties from each sim-
ulated molecule, for instance, molecular velocities and translational
energy, are averaged in each cell to compute the macroscopic prop-
erties such as density, bulk velocity, pressure, translational temper-
ature, etc. For example, in a given cell, consider M(i)cell particles of
species i, the mass density of the species is simply the total mass per
unit cell volume, i.e.,

ρ(i)cell =
1

Vcell

M(i)
cell

∑
j=1

m(i)j, cell. (16)

Details about sampling of other macroscopic properties, specifically
in the stochastic context, can be found in Ref. 11.

B. Deterministic modelling
From a deterministic viewpoint, we use the recently intro-

duced discontinuous Galerkin fast spectral (DGFS) method.12,38

DGFS directly approximates the Boltzmann equation (1), where
the transport term (spatial derivative) is discretized by the classical
DG method and the collision term (integral in v) is discretized by

FIG. 2. Flowchart of the DSMC process.
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the fast Fourier spectral method.12,74 The discretized system is then
advanced in time using the Runge-Kutta method.

The coupling of two kinds of methods (DG in the physical space
and spectral method in the velocity space) is possible due to the
special structure of the Boltzmann equation—the collision operator
acts only in v wherein t and x can be treated as parameters. Sim-
ply speaking, given the distribution functions f (i) and f (j) of species
i and j at N3 velocity grid, the fast Fourier spectral method produces
Q(ij)( f (i), f (j)

) at the same grid with O(MNρN3 log N) complex-
ity, where M ≪ N2 is the number of discretization points on the
sphere and Nρ ∼ O(N) is the number of Gauss-Legendre quadra-
ture/discretization points in the radial direction needed for low-rank
decomposition. Further details can be found in Refs. 12 and 38.

The overall DGFS method is simple from mathematical and
implementation perspective; highly accurate in both physical and
velocity spaces as well as time, robust, i.e., applicable for general
geometry and spatial mesh, exhibits nearly linear parallel scaling,
and directly applies to general collision kernels needed for high
fidelity modelling. Due to these features, we use DGFS for determin-
istic modelling of flows considered in this work.

III. BGK/ESBGK/S-MODEL/DGFS: VERIFICATIONS
Due to the nonlinearity and the complexity of Boltzmann col-

lision term Q, the collision operator is often simplified for practi-
cal reasons—a major motivation behind the development of kinetic
models.57,59,62,64,65,75 In this section, we shall restrict our discussion to
the single-species system, i.e., s = 1, i = {1}. We will drop superscripts
(i) and (ij) for simplicity.

While devising kinetic models for single species system, the col-
lision term S—in this work, we denote kinetic models by symbol S
to differentiate it from the full Boltzmann collision integral Q—is
expected to have the following four properties:72,75,76

1. It guarantees the conservation of mass, momentum, and
energy, i.e.,

∫
R3

Sdv = ∫
R3
v Sdv = ∫

R3
v2 Sdv = 0. (17)

2. The entropy production is always positive, i.e.,

− ∫
R3

ln( f )Sdv ≥ 0. (18)

3. Due to specific form of S, the phase density in equilibrium is a
Maxwellian, i.e.,

S = 0⇔ ∫
R3

ln( f )Sdv = 0⇔ f =M, (19)

where

M =
n

(2πRT)3/2
exp ( −

(v − u)2

2RT
). (20)

4. The Prandtl number is close to 2/3 for monoatomic gases, i.e.,

Pr =
5
2

kB

m
μ
κ

, (21)

where μ and κ, respectively, refer to the dynamic viscosity and
thermal conductivity.

FIG. 3. Numerical setup for 1D Fourier-Couette flow.

Among popular kinetic models, BGK/ESBGK collision opera-
tors are relaxation type kernels given as

S = ν ( fγ − f ), (22)

where fγ is the local equilibrium function, and ν = Pr p/μ is the col-
lision frequency. Here, p denotes pressure. For BGK, fγ is a local
Maxwellian given as

f BGK
γ =M, (23)

whereas for ESBGK, fγ is anisotropic Gaussian given as

f ESBGK
γ =

n
√

det(2πT)
exp ( −

1
2
(v − u)T T−1

(v − u)),

ρT = 1
Pr

ρRT Id + (1 −
1

Pr
)ρ⊖,

ρ⊖ = ∫
R3

c⊗ c f dv, ρRT = ∫
R3

c⊗ c f BGK
γ dv,

(24)

TABLE I. Common numerical parameters for Fourier-Couette flow.

Common parameters

Molecular mass: m1 (×1027 kg) 66.3
Nondimentional physical space [0, 1]
Spatial elements 2
DG order 3
Time stepping Euler
Viscosity index: ω 0.81
Scattering parameter: α 1.4
Ref. diameter: dref (×1010 m) 4.17
Ref. temperature: Tref (K) 273
Ref. viscosity: μref (Pa s) 2.117 × 10−5

Characteristic mass: m0 (×1027 kg) 66.3
Characteristic length: H0 (mm) 1
Characteristic velocity: u0 (m/s) 337.2
Characteristic temperature: T0 (K) 273
Characteristic no. density: n0 (m−3) 3.538 × 1022

Initial conditions
Velocity: u (m/s) 0
Temperature: T (K) 273
Number density: n (m−3) 3.538 × 1022

Knudsen number:a (Kn) 0.036

aBased on variable hard-sphere definition (see Refs. 11 and 38).
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TABLE II. Numerical parameters for Fourier-Couette cases.

Parameter Case FC-01 Case FC-02 Case FC-03 Case FC-04 Case FC-05

Nondimentional velocity spacea [−5, 5]3 [−5, 5]3 [−5, 5]3 [−5, 5]3 [−8, 8]3

{N3, Nρ, M}b {243, 6, 6} {243, 6, 6} {243, 6, 6} {243, 6, 6} {323, 16, 6}

Left wall (purely diffuse) conditions
Velocity: ul (m/s) (0, −50, 0) (0, −50, 0) (0, −250, 0) (0, −250, 0) (0, −250, 0)
Temperature: T l (K) 273 223 273 223 173

Right wall (purely diffuse) conditions
Velocity: ur (m/s) (0, 50, 0) (0, 50, 0) (0, 250, 0) (0, 250, 0) (0, 250, 0)
Temperature: Tr (K) 273 323 273 323 373

aNondimensional (see Refs. 12 and 38 for details on nondimensionalization).
bRequired only in the fast Fourier spectral low-rank decomposition for DGFS method (see Refs. 38 and 74).

where Id is an identity matrix. For the S-model, fγ is given as

f S-model
γ = f BGK

γ [1 +
1 − Pr

5
S c

pRT
(

c2

2RT
−

5
2
)],

S = ∫
R3

c c2 f dv.
(25)

It can be easily shown that the BGK, ESBGK, and S-model satisfy
conditions (17)–(19). The S-model and ESBGK satisfy (21), whereas
BGK does not.

To put things more concretely, we consider five Fourier-
Couette flow cases and a flow over a microelectronic chip to verify
the BGK/ESBGK/S-model/DGFS method against DSMC.

A. Verification: Fourier-Couette flows
In the current test case, we consider the effect of velocity and

temperature gradients on the solution. The coordinates are chosen
such that the walls are parallel to the y direction and x is the direction
perpendicular to the walls. The geometry as well as boundary con-
ditions are shown in Fig. 3. Specific case details have been provided
in Tables I and II. Figure 4 illustrates the velocity and temperature
along the domain length, wherein we note an excellent agreement
between DGFS and DSMC. The velocity profiles from BGK/ESBGK
are in good agreement with DGFS and DSMC, whereas the tem-
perature profiles from ESBGK are in good agreement with DGFS
and DSMC. The deviation in BGK temperature profiles is due to its
Prandtl number defect.

B. Verification: Flow around a micro-electronic chip
In the current test case, we consider the effect of temperature

gradients on a solid substrate placed in a rarefied environment. The
problem schematic, geometry, as well as boundary conditions are
shown in Fig. 5. Case details have been provided in Table IV. We
mention that, to the best of our knowledge, an analysis of such a
low-temperature flow has not been carried out previously within a
deterministic full Boltzmann framework.
1. Numerical details

We employ DSMC and DGFS to carry out simulation of flow
around a micro-electronic chip. The simulation specific numerical

FIG. 4. Variation of flow properties along the domain for Fourier-Couette flow cases
obtained with BGK, DGFS, and DSMC for Argon: (a) normalized temperature,
cases FC-0{1, 2, 3, 4} and (b) normalized y-velocity, and temperature for case
FC-05.

Phys. Fluids 31, 082002 (2019); doi: 10.1063/1.5108665 31, 082002-7

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 5. Numerical setup for the flow around a micro-electronic chip: (a) Schematic,
(b) mesh for DGFS simulations. For DSMC simulations, we subdivide each cell of
the mesh above into 5 × 5 subcells.

parameters as well as differences between stochastic (DSMC) and
deterministic (DGFS) modelling is described next.

● DSMC: SPARTA77 has been employed for carrying out
DSMC simulations in the present work. It implements
the DSMC method as proposed by Bird.11 The solver
takes into account the translational/rotational/vibrational
kinetic energies associated with the molecular motion. The
solver has been benchmarked77 and widely used for study-
ing hypersonic, subsonic and thermal12,36,38,39,78–81 gas flow
problems. In this work, cell size less than λ/3 has been
ensured in all the test cases. The no-time collision (NTC)
algorithm is used in conjunction with Bird’s VHS scattering
model. The simulations are first run for 200 000 unsteady
steps wherein the particles move, collide, and allowed to
equilibrate. No sampling is performed at this stage. Next, the
simulation is run for another 4 000 000 steady steps wherein
the samples of flow properties namely number density, flow
velocity, temperature, stress, and heat-flux, are taken for
sufficiently long time so as to produce a meaningful bulk
properties as well as minimize the statistical noise therein.
In the present case, the DSMC domain is discretized with
a uniform cell size of 0.2 μm, with 300 particles per cell on
average during initialization. A time step of 10−9 s is used
during move step of DSMC algorithm throughout the course
of simulation. N2 is used as the working gas in simulations.
The properties of the working gas is given in Table III. We
want to emphasize that for DSMC simulations, we take rota-
tional/vibrational degrees of freedom into account, i.e., N2
is treated as a diaotomic species. DSMC simulations on 30
cores of Intel(R) Xeon(R) CPU E5-2670 v2 2.50GHz, took
∼73 h.

● DGFS: We use the DGFS implementation described in
Ref. 38. The spatial domain consists of 281 uniform square

TABLE III. N2 gas VHS parameters used in 2-D single-species DSMC and DGFS
simulations. Note that DGFS, being in very early stage of research, treats N2 as a
monoatomic species.

Mass: m (kg) 46.5 × 10−27

Viscosity index: ω (−) 0.74
Scattering index: α (−) 1.0
Ref. diameter: dref (m) 4.17 × 10−10

Ref. temperature: Tref (K) 273
Ref. viscosity: μref (Pa s) 1.656 × 10−5

DSMC specific parameters
Rotational degrees of freedom: ζR (−) 2
Rotational relaxation: ZR (−) 2
Vibrational degrees of freedom: ζV (−) 2
Vibrational relaxation ZV (−) 1.901 14 × 10−5

Vibrational temperature TV (K) 3371

cells of 1 μm each. Since we are seeking a steady state
solution, the time-step is selected based on the Courant-
Friedrichs-Lewy (CFL) constraints of the forward Euler
scheme. Other case specific DGFS parameters have been
provided in Table IV. Note that, we employ N2 as the work-
ing gas in simulations, since MIKRA experiments3 were per-
formed in N2 medium. N2 is diatomic, however, DGFS, as
of now, is applicable for monoatomic gases only. Since the
working temperature range is low, we anticipate the effects
of vibrational degrees of freedom to be negligible. DGFS
simulations on 2 Nvidia-P100 GPUs took ∼9 h.

TABLE IV. Numerical parameters for flow around microelectronic chip.

Parameters MEC-01

Spatial elements 190 quadrilaterals
DG order 3
Time stepping Euler
Points in velocity mesh: N3 243

Points in radial direction:a Nρ 6
Points on half sphere:a M 6
Size of velocity meshb [−5, 5]3

Characteristic length: H0 (μm) 3
Characteristic velocity: u0 (m/s) 402.54
Characteristic temperature: T0 (K) 273
Characteristic no. density: n0 (m−3) 4.894 × 1023

Initial conditions
Velocity: u (m/s) 0
Temperature: T (K) 273
Number density: n (m−3) 4.894 × 1023

Knudsen number:c (Kn) 0.881 58

aNondimensional (see Refs. 12 and 38 for details on nondimensionalization).
bRequired only in the fast Fourier spectral low-rank decomposition for DGFS method
(see Refs. 38 and 74).
cBased on variable hard-sphere definition (see Refs. 11 and 38).
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FIG. 6. Flow properties at steady state for micro-electronic chip obtained from DSMC and DGFS using VHS collision model. For each of these figures, DSMC results (mirrored
along y-axis) have been shown in the second quadrant (−17 μm ≤ x < 0 μm), whereas DGFS results have been illustrated in the first quadrant (0 μm ≤ x < 17 μm). Observe
the legend for number-density: (a) Number density (m−3); (b) Temperature (K); (c) Speed (m/s); (d) xy-component of stress (N/m2); (e) x-component of heat-flux (W/m2); (f)
y-component of heat-flux (W/m2).
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TABLE V. x-component of force on the substrate for MEC-01 case, obtained using
DSMC and DGFS simulations.

Force (μN/μm)

Pressure (Pa) Kn DSMC DGFS

2000 0.881 58 −0.040 008 843 −0.040 010 413

2. Results and discussion
Figure 6 illustrate the contours of various flow properties for

the flow around the solid chip/substrate. Ignoring the statistical
noise, we observe excellent agreement between DSMC and DGFS.
In particular, DGFS reproduces noise-free smooth results.

Next, we compute the force acting on the substrate as a result
of the temperature gradients initially present in the flow. In general,
the pressure force on a surface is given by

F = −∫
dA

p n dA, (26)

where n is the unit surface normal, p is the pressure on the surface,
and A is the area of the surface.

Table V presents the x-component of force on the substrate for
the micro-electronic chip verification case. Again, we note reason-
able agreement between the values recovered from DSMC and DGFS
simulations.

C. Verification: Flow in short microchannels
The present test case closely follows case-I(a) from Ref. 82. In

the current test case, two reservoirs filled with N2 gas, at different
temperatures, are connected by a two-dimensional capillary tube,
both with a finite length L and height H/2, are considered. The prob-
lem schematic, geometry, as well as boundary conditions are shown
in Fig. 7. Case details have been provided in Table VI. Note in par-
ticular, we introduce a linearly decreasing temperature profile at the
top wall. Previous studies for flow in short microchannels have been
restricted to model kinetic equations82–84 or moment methods.85

To the best of our knowledge, an analysis of such a low-temperature

TABLE VI. Numerical parameters for flow in short microchannels.

Parameters SM-01

Spatial elements 127 quadrilaterals
DG order 3
Time stepping Euler
Points in velocity mesh: N3 323

Points in radial direction:a Nρ 8
Points on half sphere:a M 6
Size of velocity meshb [−5.72, 5.72]3

Characteristic length: H0 (μm) 1
Characteristic velocity: u0 (m/s) 421.98
Characteristic temperature: T0 (K) 300
Characteristic no. density: n0 (m−3) 6.62 × 1024

Initial conditions
Velocity: u (m/s) 0
Temperature: T (K) 300
Number density: n (m−3) 6.62 × 1024

Knudsen number:c (Kn) 0.2

Inlet condition
Velocity: uin (m/s) 0
Temperature: Tin (K) 600
Number density: nin (m−3) 3.31 × 1024

Pressure: pin (N/m) 27 420

Outlet condition
Velocity: uout (m/s) 0
Temperature: Tout (K) 300
Number density: nout (m−3) 6.62 × 1024

Pressure: pout (N/m) 27 420

aNondimensional (see Refs. 12 and 38 for details on non-dimensionalization).
bRequired only in the fast Fourier spectral low-rank decomposition for DGFS method
(see Refs. 38 and 74).
cBased on variable hard-sphere definition (see Refs. 11 and 38).

FIG. 7. Numerical setup for the flow in short microchan-
nels. On the horizontal channel walls, we impose a lin-
early decreasing temperature profile similar to case I(a) in
Ref. 82: (a) Schematic, (b) Mesh for DGFS simulations.
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flow has not been carried out previously within a deterministic full
Boltzmann framework.

1. Numerical details
● DSMC: The no-time collision (NTC) algorithm is used in

conjunction with Bird’s VHS scattering model. The simu-
lations are first run for 500 000 unsteady steps wherein the
particles move, collide, and allowed to equilibrate. Next, the
simulation is run for another 100 000 steady steps wherein
the samples of flow properties are taken. In the present case,

the DSMC domain is discretized with a uniform cell size of
0.01 μm, with 30 particles per cell on average during ini-
tialization (Note that SPARTA uses hierarchical Cartesian
grid over the simulation domain: used to track particles and
to co-locate particles in the same grid cell for performing
collision and chemistry operations. At the junction, where
the walls join the inlet and outlet regions, one can identify
two boundary cells. We further refine, specifically, these two
boundary cells into 10 × 10 subcells. These two cells are
unique, i.e., for each of these cells, the top face is marked

FIG. 8. Flow properties for short microchannel test-case obtained from DSMC and DGFS using VHS collision model. For each of these figures, DSMC results have been
shown in the first quadrant (0 μm ≤ y < 2 μm), whereas DGFS results (mirrored along x-axis) have been illustrated in the fourth quadrant (−2 μm ≤ y < 0 μm). Differences
in Qx can be attributed to the fact that DSMC simulations consider rotational degrees-of-freedom of N2 into account, whereas DGFS does not: (a) Number density (m−3); (b)
Temperature (K); (c) Speed (m/s); (d) xy-component of stress (N/m2); (e) x-component of heat-flux (W/m2); (f) y-component of heat-flux (W/m2).
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FIG. 9. Flow properties on the horizontal centerline (y = 0 μm) for short microchannel test-case obtained from DSMC and DGFS using VHS collision model: (a) Number
density (m−3), and Temperature (K); (b) Speed (m/s), and the xy-component of stress (N/m2).

as inlet, and the left face is marked as solid wall. The cell-
size has been made smaller to avoid any potential leakage).
A time step of 10−10 s is used. N2 is (Table III) used as the
working gas in simulations.

● DGFS: The spatial domain consists of 127 nonuniform
quadrilateral elements as shown in Fig. 7(b). Case specific
DGFS parameters have been provided in Table VI.

2. Results and discussion
Figure 8 illustrate the contours of various flow properties for the

flow around the solid chip/substrate. Ignoring the statistical noise,
we gain note excellent agreement between DSMC and DGFS. In
particular, minor differences in x-component of heat-flux i.e., Qx
can be attributed to the fact that DSMC simulations consider rota-
tional degrees-of-freedom of N2 into account, whereas DGFS does
not.

Figure 9 shows the variation of flow properties over the vertical
centerline, wherein we again observe an excellent agreement.

IV. MIKRA: MICRO IN-PLANE KNUDSEN RADIOMETRIC
ACTUATOR

MIKRA, acronym for Micro In-Plane Knudsen Radiometric
Actuator, is a microscale compact low-power pressure sensor. A
computer-aided design (CAD) representation of the device has
been illustrated in Fig. 10. Simply speaking, the device consists
of an array of (twelve) microbeams labelled the Shuttle Arm and
Heater Arm in Fig. 10. The heater arm is heated, and a thermal
motion is induced in the gap between the heater and the shut-
tle. Subsequently, the shuttle arm experiences forces on order of
few micro-newtons. This force is commonly identified as Knud-
sen force. Depending on the temperature of the heater, the shuttle
gets displaced, and this displacement is measured capacitively. The
magnitude of displacement is then used to estimate the ambient
pressure. Specific details on MIKRA can be found in Refs. 3, 52,
and 54.

A. Problem statement
The flow configuration is shown in Fig. 11. Consider the 2D

uniform flow of N2 with freestream velocity U∞, freestream tem-
perature T∞, and freestream pressure p∞ over two two-dimensional
square vanes, each with side lengths of 50 μm, separated by a gap
of 20 μm (also used as the nondimensionalizing length scale). The
vanes are modeled as purely diffuse solid walls. The left vane, indi-
cated in blue, is kept at a lower/cold temperature which we denote
by TC. The right vane, indicated in red, is kept at a higher/hot tem-
perature which we denote by TH . The substrate, indicated in green,
forms the lower boundary of the domain, and is modelled as a purely
diffuse solid wall. The end goal is to simulate the motion of gas flows
in the gap between the two vanes, subject to different initial pres-
sures p∞, hot (TH) and cold (TC) vane temperatures as listed in
Table VII, in order to identify the correct circulation, induced low
velocity, temperature gradient, and Knudsen forces from the vanes.

FIG. 10. The CAD model for Gen1 Micro In-Plane Knudsen Radiometric Actuator
(MIKRA).3
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FIG. 11. Schematic for numerical simulation of thermostress
convection in MIKRA Gen1.3 The interior dashed thin black
lines indicate the blocks used for structured mesh genera-
tion. Specifically for deterministic DGFS simulations, a lin-
ear gradient is applied within blocks such that the cells are
finer in the near-vane region.

The results are to be obtained from both stochastic (DSMC) and
deterministic (DGFS) simulations.

B. Numerical details
The simulation is carried out at wide range of Knudsen number

for flows in early slip to early free molecular regime. The simula-
tion specific numerical parameters as well as differences between
stochastic (DSMC) and deterministic (DGFS) modelling is described
next.

● DSMC: SPARTA77 has been employed for carrying out
DSMC simulations in the present work. The simulations
are first run for 200 000 unsteady steps wherein the parti-
cles move, collide, and allowed to equilibrate. No sampling

TABLE VII. Numerical parameters for thermostress convection in MIKRA Gen1
simulations for DSMC and DGFS using VHS collision model for N2 molecules.

Cases

Parameter M-01 M-02 M-03

Pressure: p (Torr) 1.163 2.903 7.246
Number density: n (×1021 m−3) 37.8609 94.5058 235.8901
Knudsen number:a Kn 1.85 0.74 0.30
Cold vane temperature: TC (K) 306 306 304
Hot vane temperature: TH (K) 363 356 331

DGFS parameters
Points in velocity mesh: N3 243 243 243

Points in radial direction:b Nρ 6 6 6
Points on half sphere:b M 6 6 6
Size of velocity meshc [−5, 5]3 [−5, 5]3 [−5, 5]3

BGK/ESBGK/S-model parameters
Points in velocity mesh: N3 483 243 243

Size of velocity meshc [−7, 7]3 [−5, 5]3 [−5, 5]3

aBased on hard-sphere definition (see Ref. 11).
bRequired only in the fast Fourier spectral low-rank decomposition (see Refs. 38
and 74).
cNondimensional (see Refs. 12 and 38 for details on nondimensionalization).

is performed at this stage. Next, the simulation is run for
another 5 000 000 steady steps wherein the samples of flow
properties namely number density, flow velocity, tempera-
ture, stress, and heat-flux, are taken for sufficiently long time
so as to produce a meaningful bulk properties as well as min-
imize the statistical noise therein. In the present case, the
DSMC domain is discretized into 300× 150 cells, resulting in
a uniform cell size of 2 μm, with 50 particles per cell on aver-
age during initialization. A time step of 10−9 s is used during
move step of DSMC algorithm throughout the course of sim-
ulation. Note that these DSMC parameters have been taken
from Ref. 3 wherein the authors performed multiple ver-
ification cases with different time-steps, grid-size, domain
length, particles per cell, etc. N2 is used as the working gas
in simulations, since MIKRA experiments3 were performed
in N2 medium. The properties of the working gas is given
in Table III. DSMC simulations treat N2 as diatomic species,
and takes rotational degrees of freedom into account.

● DGFS/BGK/ESBGK/S-model: We use the DGFS imple-
mentation described in Ref. 38. The spatial domain consists
of 849 elements [39 × 23 (total) - 2 × 6 × 4 (remove the
vane regions)]. We use a linearly refined structured grid as
illustrated in Fig. 12. While structured grids might seem
inflexible compared to unstructured grids, they are known

FIG. 12. Spatial mesh used for carrying out DGFS simulations for MIKRA Gen1
device. A linear gradient is applied within blocks such that the cells are finer in the
near-vane region. A 3rd order nodal/sem DG scheme has been used.
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to produce more stable scheme with superior convergence
rates,86,87 are amenable to highly efficient adaptive h/p mesh
refinement via recursive element splitting88 (Nevertheless,
DGFS is more general, and test cases on general grids will
be reported in future works). Since we are seeking a steady
state solution, the time-step is selected based on the CFL
constraints of the forward Euler scheme. Other case specific
DGFS parameters have been provided in Table VII.

It is worth noting that both the methods have different cell
size requirements. In DSMC method, the contribution of parti-
cle collision to the transport properties is affected by strict spatial
cell size requirements. In DGFS, however, the transport properties

are strongly affected by local 3-D velocity space resolution rather
than spatial resolution. As we show later, one can resolve the flow
properties with fewer cells using DGFS.

C. Results and discussion
1. Flow pattern

Figures 13 and 14 illustrate the contour plot of various flow
properties for the highest pressure case Kn = 0.3 (left column) and
Kn = 1.85 (right column). For each of these plots, the DSMC and
DGFS contours have been overlaid, wherein DSMC results have
been indicated by thin black lines, and DGFS results have been

FIG. 13. Variation of flow properties along the domain for MIKRA Gen1 cases (M-01: Kn = 1.85, and M-03: Kn = 0.3) obtained from DSMC (thin black lines), DGFS (thick red
lines), BGK (thick blue lines), ESBGK (thick green lines), and S-model (thick orange lines): (a) Kn = 0.3, Number density (m−3); (b) Kn = 1.85, Number density (m−3); (c)
Kn = 0.3, Temperature (K); (d) Kn = 1.85, Temperature (K); (e) Kn = 0.3, xy-component of stress (N/m2); (f) Kn = 1.85, xy-component of stress (N/m2).
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FIG. 14. Continuation of Fig. 13: (a) Kn = 0.3, x-component of heat-flux (W/m2); (b) Kn = 1.85, x-component of heat-flux (W/m2); (c) Kn = 0.3, y-component of heat-flux
(W/m2); (d) Kn = 1.85, y-component of heat-flux (W/m2); (e) Kn = 0.3, Speed (m/s); (f) Kn = 1.85, Speed (m/s).

indicated with thick red lines. Since the flow is strictly driven by
temperature gradients, we expect very small deviation in the number
density from the equilibrium value of 235.8901 × 1021 m−3, as is also
evident from Fig. 13(a). In terms of temperature, in Fig. 13(c), we
observe a rather familiar flow expansion, in the sense that, the hot
vane dissipates heat to the surrounding acting as a source, thereby
giving rise to a spiral with spiral’s origin at the hot vane. Observe
the interaction of contour lines (isotherms at 305 K and 310 K)
with the cold vane in the region (250 μm ≤ X ≤ 300 μm, 25 μm ≤
Y ≤ 60 μm). We notice sharply curved isotherms near the top and
right sides of the cold vane (see Fig. 15). Taking into account the
Knudsen number of 0.3 and the characteristic length scale of sys-
tem of 20 μm, the Knudsen layer should extend few mean free paths
from the solid surfaces i.e., O(λ) ≈ O(6 μm). Therefore, one should
expect some temperature jump, and therefore nonlinearity in the
temperature in the near-wall region. More interestingly, we note an

inflection in the isotherms at the top surface of the cold vane. This
is essentially because the cold vane surface temperature is 304 K,
while the free-stream is at 296 K. Hence, near to the heating source,
say top-right end of the cold vane, the surface temperature is lower
than the temperature of a layer of molecules just above the surface;
and far away from the heating source, say top-left end of the cold
vane, the surface temperature is higher than the temperature of a
layer of molecules just above the surface. Therefore, an inflection in
isotherms is expected somewhere between the top-left and top-right
corner of the cold vane.

The origin of Knudsen force can be appreciated as follows.
Consider a differential area dS over the cold vane as shown Fig. 15.
The molecules impinging on the area dS can be thought as made up
of two types of molecules: molecules coming from colder point A
and molecules coming from hotter point B, both separated by few
mean free paths. Near to the top right end of the cold vane, nearer
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FIG. 15. Sharp curvature in isotherms
near the surface of cold vane at Kn = 0.3.
This can be interpreted in terms of imbal-
ance of molecules of type A (cold) and
type B (hot) at the top-left/top-right ends
of the cold vane.

to the hot vane, one should expect larger concentration of molecules
of type B, and smaller concentration of molecules of type A. Con-
versely, near to the top left end of the cold vane, which is (relatively)
far away from the hot vane, one should expect a smaller concentra-
tion of molecules of type B, and larger concentration of molecules
of type A. Specifically, at the top left end of the cold vane, due to
this imbalance of particles hitting the surface area, the momentum
transferred to the surface element dS is in the opposite direction to
the temperature gradient; however the gas flow is induced in the
direction of the temperature gradient.14,23 This overall momentum
imbalance contributes to the Knudsen force.

Figure 13(e) illustrates the variation of off-diagonal (xy) com-
ponent of stress tensor at Kn = 0.3. First, we note the development
of four ovals/ellipses originating at the four corners/edges of the
hot vane. The effect is more pronounced at the right end (top-right
and bottom-right corners) of the hot vane i.e., the length of the
semi-major axis is larger for the ellipses on the right. At the top-
left corner of the hot vane, in particular, we observe interaction of
ovals with the top-right edge of the cold vane (note the distorted
shape of the oval/ellipse at the top-left boundaries of the hot vane).
Since the Knudsen number is in the slip/early-transition regime (Kn
= 0.3), consider the expression for the stress-tensor, arrived in part
by second order Chapman-Enskog expansion2

Pij = pδij + τ(1)ij + τ(2)ij +⋯,

τ(1)ij = −2 μ[
∂ui

∂xj
],

(27)

τ(2)ij = K2
μ2

ρT
[

∂2T
∂xi∂xj

] + K3
μ2

ρT2 [
∂T
∂xi

∂T
∂xj
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
τT

ij : Thermal stress tensor

+ K1
μ2

ρ
∂uk

∂xk
[
∂ui

∂xj
], i, j, k ∈ {1, 2},

where Pij, p, u, μ, ρ are stress tensor, pressure, velocity, dynamic vis-
cosity, and density respectively. δij is the Kronecker delta function,
τij is the off-diagonal term of the stress tensor, and K i ≈ 1,

i = {1, 2, 3} are species/molecular-interaction specific constants.2

This yields

P12 = τ(1)12 + τ(2)12 +⋯ = Pxy,

τT
12 = K2

μ2

ρT
[

∂2T
∂x1∂x2

] + K3
μ2

ρT2 [
∂T
∂x1

∂T
∂x2
]

= K2
μ2

ρT
[
∂2T
∂x∂y

] + K3
μ2

ρT2 [
∂T
∂x

∂T
∂y
].

(28)

Let us consider four points in the flow: A (top-right corner of
cold vane), B (top-left corner of hot vane), C (third vertex of equilat-
eral triangle ΔABC s.t.

Ð→
BC ×

Ð→
CA/∥

Ð→
BC ×

Ð→
CA∥ = k̂), and D (mid point

of A and B) as shown in Fig. 16. Based on isotherms in Fig. 15, it can
be inferred that the temperature difference between points A and B
is ≈10 K, whereas the temperature difference between points C and
D is ≈5 K. Consistent with Eq. (28), theoretically, we expect the ther-
mal stresses (and therefore Pxy) to be larger between points A and B
since ∂T/∂x|AB ≫ ∂T/∂y|CD (more formally: ∥∇T∥AB ≫ ∥∇T∥CD,
∥∇

2T∥AB ≫ ∥∇
2T∥CD). Hence, the distorted ellipse. A more subtle

observation is as follows: Why, precisely, should an isocontour line
of xy component of stress, start from top-left corner of the hot-vane
(i.e., point B) and end at the top-right corner of cold-vane (i.e., point
A). What happens to the entire flow field if we introduce rough-
ness on the walls, or smooth the vane corners–few questions that
we delegate to a future study.

Next, Figs. 14(a) and 14(c) depict the variation of x and y com-
ponents of heat flux. We want to reemphasize that DSMC simula-
tions consider the rotational degrees of freedom of N2 into account,
whereas DGFS, being in very early stages of research, does not. Nev-
ertheless, we observe a fair agreement between DSMC and DGFS. In
Fig. 14(a), in the region (250 μm ≤ X ≤ 320 μm, 50 μm ≤ Y ≤ 90 μm),
we again note presence of isocontour lines between the top-left and
top-right corners of the cold and hot vanes. A more subtle observa-
tion is as follows: Multiple isocontours, for instance −2000 W/m,2

−4000 W/m,2 −6000 W/m2 (the unlabeled contour just below
−4000 W/m2 isocontour), differing by large magnitudes, start at
approximately the top-left corner of the hot vane, and end at the
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FIG. 16. xy component of stress tensor
at Kn = 0.3: origin of oval/ellipses at the
edges of the vanes. Note the distorted
shape of the ellipse between the top-right
corner of cold vane and top-left corner of
hot vane. Since the temperature gradient
is stronger between point A and B, com-
pared to point C and D, we expect the
semi-major axis of the ellipse to be larger
than the semi-minor axis, and hence the
distorted ellipse/oval – an observation
consistent with Eqs. (27) and (28) since
∂T /∂x≫ ∂T /∂y.

FIG. 17. Instantaneous streamlines near the vanes of MIKRA Gen1 device at Kn = 0.30 obtained from DGFS using VHS collision model. Observe the vortex formation above
the cold vane, and top right corner of hot vane: (a) t = 1.25 × 10−3 s; (b) t = 2.5 × 10−3 s; (c) t = 3.75 × 10−3 s; (d) t = 4.375 × 10−3 s.
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FIG. 18. Variation of flow speed (m/s) at steady state for MIKRA Gen1 cases obtained from DSMC and DGFS using VHS collision model: (a) Kn = 0.30, DSMC; (b)
Kn = 0.30, DGFS; (c) Kn = 0.74, DSMC; (d) Kn = 0.74, DGFS; (e) Kn = 1.85, DSMC; (f) Kn = 1.85, DGFS.
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FIG. 19. Variation of flow properties along the domain vertical centerline (X = 300 μm) for MIKRA Gen1 cases obtained from DSMC (symbols) and DGFS (lines) using
VHS collision model: (a) Number density (m−3); (b) Temperature (K); (c) x-component of heat-flux (W/m2); (d) y-component of heat-flux (W/m2); (e) xy-component of stress
(N/m2); (f) Speed (m/s).
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FIG. 20. Variation of flow properties along the domain vertical centerline (X = 300 μm) for MIKRA Gen1 cases obtained from DSMC (symbols) and BGK (lines): (a) Number
density (m−3); (b) Temperature (K); (c) x-component of heat-flux (W/m2); (d) y-component of heat-flux (W/m2); (e) xy-component of stress (N/m2); (f) Speed (m/s).
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FIG. 21. Variation of flow properties along the domain vertical centerline (X = 300 μm) for MIKRA Gen1 cases obtained from DSMC (symbols) and ESBGK (lines): (a) Number
density (m−3); (b) Temperature (K); (c) x-component of heat-flux (W/m2); (d) y-component of heat-flux (W/m2); (e) xy-component of stress (N/m2); (f) Speed (m/s).
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FIG. 22. Variation of flow properties along the domain vertical centerline (X = 300 μm) for MIKRA Gen1 cases obtained from DSMC (symbols) and Shakhov (lines): (a)
Number density (m−3); (b) Temperature (K); (c) x-component of heat-flux (W/m2); (d) y-component of heat-flux (W/m2); (e) xy-component of stress (N/m2); (f) Speed (m/s).
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top-right corner of the cold vane, resulting in sharply curved iso-
contours. A partial explanation of such effects appears in Ref. 20,
wherein the author attributed the observation to simply edge effects,
basing the argument on the imbalance of particles of type A (cold)
and type B (hot) near to the edges, as was mentioned earlier in the
discussion.

Figure 14(e) illustrates the flow speed in the domain. We notice
significant statistical fluctuations in DSMC (thin black lines), to an
extent that removing DGFS contour lines in red, would make it dif-
ficult, if not impossible, to decipher the overall flow structure. A
more complete picture of the flow is presented through transient
DGFS streamlines in Fig. 17. First, we note the streamlines point-
ing in the upward direction. This is essentially due to the heating of
the molecules (and therefore the thermal energy imparted to them)
in the lower portions of the domain. In the process, four character-
istic vortexes appear at the four corners of the heated vane, relatively
early during the course of the simulation, for instance, see Fig. 17(a)
at 1.25 ms. Over the time, secondary vortexes appear in the flow,
most notably, a larger vortex at the top of the cold vane, and a smaller
vortex near the top-right corner of hot vane.

Figure 18 shows the steady state speed contours at different
Knudsen numbers with the corresponding flow streamlines over-
laid. With increase in Knudsen number from Kn = 0.3 to Kn = 0.74,
we note sharp increase in flow velocity, approximately by a factor
of two. Consequently, the vortexes grow in size. The change in flow
speed, however, from Kn = 0.74 to Kn = 1.85, although appreciable,
is relatively mild.

Finally, we compare the variation of flow properties along the
vertical centerline (x = 300 μm, 0 ≤ y ≤ 300 μm) in Figs. 19–22 for
various models. We observe a fair agreement between DSMC and
DGFS results ignoring the statistical noise (see Figs. 13 and 14). In
particular, in Fig. 19(b), we observe peak temperatures near the edges
of hot and cold vanes i.e., in the region x = 300 μm, 30 ≤ y ≤ 60 μm.
Through Figs. 19(c) and 19(d), we infer that the thermal gradients
are stronger in the x-direction. More notably, we observe the high-
est thermal-stress in the edge region (note the valley in the region
x = 300 μm, 40 ≤ y ≤ 60 μm). We conjecture the trough of the val-
ley to be shallower if the vane edges ought to be made smoother.
A slightly peculiar observation is as follows: the trough of the val-
ley is deeper at Kn = 0.74 compared to Kn = 0.30, and shallower at
Kn = 1.85 compared to Kn = 0.74. This could be explained as fol-
lows: at Kn = 0.30 the temperature difference, TH − TC, is lower
than the one correspoding to the Kn = 0.74 case and therefore the
thermal stress increases in the latter case. For the Kn = 1.85 and
Kn = 0.74 cases, wherein the temperature difference is approxi-
mately same, the peak thermal-stress decreases owing to the bimodal
nature of the Knudsen forces.

V. MULTISPECIES MIKRA
In the present section, we carry out the MIKRA simulations

for binary mixture consisting of N2 and H2O using the variable soft
sphere model.

A. Problem statement
The flow configuration remains the same as shown in Fig. 11.

We consider the 2D uniform flow of binary mixture of N2 and

TABLE VIII. Numerical parameters for thermostress convection in MIKRA Gen1
simulations for DSMC and DGFS using VSS collision model for N2/H2O binary
mixture.

Cases

Parameter MSM-01

Pressure: p (Torr) 1.163
Total number density: n (×1021 m−3) 37.860 91
Concentration: (n(N2)/n, n(H2O)

/n) (0.05, 0.95)
Knudsen number:a Kn 1.85
Cold vane temperature: TC (K) 306
Hot vane temperature: TH (K) 363

DGFS parameters
Points in velocity mesh: N3 323

Points in radial direction:b Nρ 8
Points on full sphere:b M 12
Size of velocity meshc [−6, 6]3

aBased on hard-sphere definition using total number density (see Ref. 11).
bRequired in the fast Fourier spectral low-rank decomposition (see Ref. 39).
cNondimensional (see Refs. 12 and 38 for details on nondimensionalization).

H2O. The end goal is to simulate the motion of gas flows in the
gap between the two vanes, subject to initial pressure p∞, hot (TH)
and cold (TC) vane temperature as listed in Table VIII, in order
to identify the correct circulation, induced low velocity, tempera-
ture gradient, Knudsen forces, and heat transfer rate from the vanes.
The results are to be obtained from both stochastic (DSMC) and
deterministic (DGFS) simulations.

B. Numerical details
The multispecies simulations are carried out for flows in tran-

sition regime. The specific differences between stochastic (DSMC)
and deterministic (DGFS) modelling is described next.

● DSMC: SPARTA77 has been employed for carrying out
DSMC simulations in the present work. The geometric
parameters remain the same as described in Sec. IV B. A
minimum of 300 DSMC simulator particles per cell is used
in conjunction with the no-time collision (NTC) algorithm
and VSS scattering model. The simulations are first run for

TABLE IX. N2 and H2O gas VSS parameters used in MIKRA Gen1 DSMC and DGFS
simulations.

N2 H2O

Mass: m (kg) 46.5 × 10−27 29.9 × 10−27

Viscosity index:a ωi, (−) 0.74 1.00
Scattering index: αi, (−) 1.36 1.00
Ref. diameter: dref,i (m) 4.07 × 10−10 5.78 × 10−10

Ref. temperature: Tref,i (K) 273 273

aFor cross-collision (see Refs. 11 and 12): Ψij = 0.5(Ψi + Ψj), i ≠ j, where Ψ = {ω, α, dref ,
Tref}.
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FIG. 23. Variation of flow properties along the domain for multispecies MIKRA
Gen1 case (MSM-01: Kn = 1.85) obtained with DSMC (thin black lines) and DGFS
(thick red lines) using VSS collision model. We want to reemphasize that DSMC
simulations consider the rotational degrees of freedom of N2 and H2O into account,
whereas DGFS, being in very early stages of research, does not; and therefore
we expect some differences between DSMC and DGFS results: (a) N2, Number
density (m−3); (b) H2O, Number density (m−3); (c) N2, Temperature (K); (d) H2O,
Temperature (K).

FIG. 24. Continuation of Fig. 23: (a) N2, Speed (m/s); (b) H2O, Speed (m/s); (c)
N2, xy-component of stress (N/m2); (d) H2O, xy-component of stress (N/m2).
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200 000 unsteady steps, and subsequently another 5 000 000
steady steps wherein the flow sampling is performed. Sim-
ilar to the previous single-species MIKRA case, the DSMC
domain is discretized into 300 × 150 cells, resulting in a
uniform cell size of 2 μm, with 285 particles of H2O and
15 particles of N2, per cell on average during initialization.
A time step of 10−9 s is used during move step of DSMC
algorithm throughout the course of simulation. N2 and H2O
are used as the working gases in simulations. The proper-
ties of the working gas is given in Table IX. Note that for
N2, we consider ζR = 2 rotational degrees of freedom, rota-
tional relaxation ZR = 0.2, ζV = 2 vibrational degrees of free-
dom, vibrational relaxation ZV = 1.901 14 × 10−5, and vibra-
tional temperature Tv = 3371 K; and for H2O, we consider
ζR = 3 rotational degrees of freedom, rotational relaxation
ZR = 0.2, ζV = 3 vibrational degrees of freedom, vibra-
tional relaxation ZV = 1.901 14 × 10−5, and vibrational
temperature Tv = 5261 K.

● DGFS: We use the DGFS implementation described in
Ref. 12. The geometrical parameters remain the same as

described in Sec. IV B. Multispecies case specific DGFS
parameters have been provided in Table VIII. Note that, we
employ N2 and H2O as the working gas in simulations. N2 is
diatomic, and H2O is triatomic, however, DGFS, as of now,
is applicable for monoatomic gases only. Since the work-
ing temperature range is low, we anticipate the effects of
vibrational degrees of freedom to be negligible.

C. Results and discussion
1. Flow pattern

Figures 23 and 24 illustrate the contour plot of various flow
properties for the MSM-01 case in transition regime, wherein the
N2 and H2O are in 0.05:0.95 concentration ratio. Similar to the
single species case, for each of these plots, the DSMC and DGFS
contours have been overlaid, wherein DSMC results have been indi-
cated by thin black lines, and DGFS results have been indicated with
thick red lines. Since the flow is strictly driven by temperature gra-
dients, we expect very small deviation in the number density from
the equilibrium values of 35.967 864 5 × 1021 m−3 for H2O and

FIG. 25. Variation of flow properties along the domain vertical centerline (X = 300 μm) for multispecies MIKRA Gen1 case obtained with DSMC (symbols) and DGFS (lines)
using VSS collision model: (a) Number density (m−3); (b) Temperature (K); (c) xy-component of stress (N/m2); (d) Speed (m/s).
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1.893 045 5 × 1021 m−3 for N2, as is also evident from Figs. 23(a) and
23(b). In terms of temperature, in Figs. 23(c) and 23(d), we again
observe a rather familiar flow expansion, in the sense that, the hot
vane dissipates heat to the surrounding acting as a source, thereby
giving rise to a spiral with spiral’s origin at the hot vane. From
the fundamental mass/momentum conservation principles, one can
infer that, in the presence of temperature gradients, the heavier
species, here N2, moves slower and the lighter species, here H2O,
moves faster giving rise to the well-known thermal diffusion. This
explain why the isotherms for H2O spread farther apart compared
to those of N2.

Figures 24(c) and 24(d) illustrate the variation of off-diagonal
(xy) component of stress tensor. Again, we observe the develop-
ment of four ovals/ellipses originating at the four corners/edges of
the hot vane, wherein the effects are more pronounced at the right
end (top-right and bottom-right corners) of the hot vane. The stress
is higher for H2O compared to N2. Figures 24(a) and 24(b) illus-
trate the flow speed in the domain. We notice significant statistical
fluctuations in DSMC (thin black lines) contour lines for N2 due
to lower number of DSMC simulator particles. In particular, we
observe that DGFS results/contours are insusceptible to the con-
centration of the individual species, thereby opening the possibil-
ity of its application for simulating flows involving species in trace
concentrations.

Finally, we compare the variation of individual species flow
properties along the vertical centerline (x = 300 μm, 0 ≤ y ≤ 300
μm). We observe a fair agreement between DSMC and DGFS results
ignoring the statistical noise for the bulk properties. In Fig. 19(b), we
note peak temperatures near the edges of hot and cold vanes i.e., in
the region x = 300 μm, 30 ≤ y ≤ 60 μm. More specifically, the temper-
ature is higher for H2O compared to N2, an observation consistent
with fundamental conservation principles. One can infer that the
magnitude of the thermal gradients are stronger in the x-direction.
Notably, in Fig. 25(c), we observe the highest thermal-stress in the
edge region (note the valley in the region x = 300 μm, 40 ≤ y ≤
60 μm). Finally, consistent with aforementioned observations, we
observe higher velocity at x = 300 μm, y ≈ 54 μm—the location of
the top edges of the two vanes.

VI. CONCLUSIONS
We have presented an application of the recently introduced

deterministic discontinuous Galerkin fast spectral (DGFS) method
for assessing the flow phenomenon in the thermostress convection
enabled microscale device MIKRA—a compact low-power pressure
sensor. We carried out MIKRA simulations in the slip-to-transition
regime gas flows at different Knudsen numbers. The single-species
cases are run with a variable hard sphere scattering model. We con-
clude that the results obtained with DGFS and DSMC are inextri-
cable ignoring the statistical noise. The DSMC provides verifica-
tion benchmark for the solution of the Boltzmann equation with
real gas effects. The overall DGFS method is simple from a math-
ematical and implementation perspective, highly accurate in both
physical and velocity spaces as well as time, robust, i.e., applicable
for general geometry and spatial mesh, exhibits nearly linear par-
allel scaling, and directly applies to general collision kernels, for
instance, Bird’s variable hard/soft sphere models, needed for high
fidelity modelling. DGFS presents a viable alternative for simulation

of highly information rich thermostress convection processes at the
microscale.
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