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The kinetic equations govern the behavior of gaseous flows, compressibility, turbulence, 
reactions with internal energy exchange, that form the essence of numerous physical 
processes. Despite their wide applicability, their six-dimensional (seven including time) 
nature presents a huge computational challenge. With the advent of the modern high 
performance computing systems and few recent advances in numerical methods, it is 
now possible to numerically study the behavior of these systems. However, to understand 
the instability of rich molecular processes and find a structure in the apparent chaos, a 
scheme that is efficient in multi-dimensions, exhibits high parallel-efficiency, and foremost 
produces an entropy solution as per the theory of solutions of hyperbolic systems may 
prove useful. In this work, first, we construct an entropy stable flux for non-linear 
inhomogeneous (full) Boltzmann equation. Second, to ensure geometrical flexibility, we 
couple the scheme with a class of high order discontinuous Galerkin discretization (Jaiswal 
2019 [41]) which satisfy summation-by-part (SBP) discretely. Third, utilizing SBP, we prove 
that the resulting semi-discrete scheme is locally and globally conservative in flat spaces; 
preserves the entropy-decay (H-theorem) property; efficient and simple; and therefore 
suitable for dealing with highly complex non-smooth flow problems. Fourth, we show that 
the fully-discrete kinetic scheme, utilizing an implicit-explicit time-discretization, in the 
limit of vanishing Knudsen number, becomes an entropy-stable explicit scheme applied to 
the Euler system. Fifth, we carry out a series of verification tests to illustrate the stability, 
accuracy, and conservation properties of the proposed method. These tests involve over 85 
million degrees of freedom and over 50 billion operations per time-step.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

The premise that the kinetic models, arising at a detailed molecular level description of the evolution of matter, are 
linked with the continuum equations in a limit, for example mean free path approaching zero, has been emphasized since 
the beginning of the kinetic theory of gases. It has always been hoped that this limit will reveal and illuminate some 
of the complex phenomena present at the macroscopic level [53]. Kinetic theory may hold the key to understanding tur-
bulence [24,25]. Indeed, incompressible Navier-Stokes [13] can be formally derived from the asymptotics of Boltzmann 
equation.1 The widely-used approaches for numerical solution of the kinetic equations are based on the Monte Carlo (MC) 
methods [3,4] because the process of statistical sampling is often computationally efficient for evaluating multi-dimensional 
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1 This is different than Chapman-Enskog expansions which have never received a satisfactory mathematical justification [65].
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integrals contained therein. For example, the direct simulation MC (DSMC) method, based on the kinetic theory of dilute 
gases, introduces a set of particles in the computational domain, transports them according to their velocities, and then 
models the binary interactions between them using MC. In the limit of infinitely-many number of particles and interactions, 
DSMC method converges to the Boltzmann equation [66]. These methods are useful for simulating the molecular processes, 
compressible, turbulent, non-equilibrium chemical reactions with internal energy exchange, that form the basis of our un-
derstanding of the physical reality at microscale. However, the DSMC methods are based on the assumption that the binary 
collision processes are local processes and therefore only particles within a computational cell may collide with each other. 
This implies that the size of the cell, in which the particle resides, should be less than the mean-free path (MFP) of the 
particle, and the particle, during a single time-step, should move within the cell so that it may actually collide with other 
particles. In near-continuum cases, as MFP approaches zero, naturally these methods become expensive due to increase in 
number of cells and decrease in time-step (ensures that the particle remains in the cell during interaction). For reference, 
the turbulence simulations in [24] were carried out on half-a-million core system, inaccessible to the most of academia or 
industry. In this work, we aim to solve the same problem using full Boltzmann equation on few graphics processing units, 
accessible to the most of academia or industry.

The other approaches for numerical simulations of kinetic equations are deterministic, which seek to discretize the 
Boltzmann equation and compute numerically approximate solutions. We refer to [16] for a recent review. To understand 
the instability of rich molecular processes and find a structure in the apparent chaos, we need a scheme that doesn’t break 
down numerically, is efficient in multi-dimensions on parallel computers, and foremost produces a unique weak solution 
as per current understanding of the theory of solutions of hyperbolic systems [48]. In this regard, we mention that DSMC 
simulations are unconditionally stable, so we may not be able to verify if the simulation has actually converged to the 
correct solution, other than the hope that it probably has. Rerunning the simulation may not be always an option because 
of the enormous amount of effort required, computationally, economically, or otherwise. For example, the half-a-million 
core simulations [24] are at least an order of magnitude costly than equivalent laboratory experiments (estimate based on 
the pricing of Amazon-EC2). The aim of modeling and simulation has always been the other way around. This issue also 
appears in direct numerical simulations of reactive turbulence [9]. Nevertheless, we emphasize that the potential of kinetic 
simulations are enormous, for example, the computational cost of continuum reactive turbulence calculations is affected 
by the number of species being modeled; whereas the same is not true for DSMC. Therefore, kinetic simulations open up 
avenues for the assessment of the accuracy of reactive turbulence theories.

The solution of hyperbolic system which maximizes entropy is referred as entropy solution. The uniqueness has been 
recently disputed, however [23]. The schemes that produce an entropy solution are called entropy-stable schemes. For 
linear hyperbolic systems, schemes are designed to be L2-stable at a discrete level [33]; whereas for nonlinear convection-
dominated systems, the entropy stability plays the corresponding role. Osher [57] established a general class of such 
schemes, called E-schemes, that preserve entropy inequalities. Entropy is crucial in the theory, numerics, and physics of 
non-linear problems [49] such as Navier-Stokes [8], Boltzmann [17]. To proceed further, let us introduce the notations for 
the Boltzmann equation.

1.1. Kinetic equations

In the present work, we are concerned with the following class of kinetic equations:

∂t f + v · ∇x f = 1

Kn
Q( f , f ), t ≥ 0, x ∈ �x ⊂Rdx , v ∈R3, Kn ∈ (0,∞) (1)

where f = f (t, x, v) is the one-particle distribution function at time t , position x, and particle velocity v . f dxdv gives the 
number of particles to be found in an infinitesimal volume dx dv centered at the point (x, v) of the phase space. Q( f , f )
is the collision operator describing the interactions among particles, and acts only in the velocity space. For instance, the 
non-dimensional full Boltzmann collision operator (cf. [40] for details on non-dimensionalization) is given as

Q( f , f )(v) =
∫
R3

∫
S2

B(|v − v∗|, cosχ)[ f (v ′) f (v ′∗) − f (v) f (v∗)]dω dv∗, (2)

where (v, v∗) and (v ′, v ′∗) denote the pre- and post-collision velocity pairs, which are related through momentum and 
energy conservation as

v ′ = v + v∗
2

+ |v − v∗|
2

ω, v ′∗ = v + v∗
2

− |v − v∗|
2

ω, cosχ = ω · (v − v∗)
|v − v∗| , (3)

with the vector ω varying over the unit sphere S2. The quantity B (≥ 0) is the collision kernel depending only on |v − v∗|
and the scattering angle χ (angle between v − v∗ and v ′ − v ′∗). The gain and the loss terms are defined as

Q =
∫

3

∫
2

B(|v − v∗|, cosχ) f (v ′) f (v ′∗)dω dv∗,

R S

2
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Q = f · ν( f ), ν( f ) =
∫
R3

∫
S2

B(|v − v∗|, cosχ) f (v∗)dω dv∗. (4)

Given the distribution function, f , one can recover the macroscopic observable via moments,

n =
∫
R3

f dv, u = 1

n

∫
R3

f v dv, T = 2

3n

∫
R3

f |v − u|2 dv,

P = 2
∫
R3

f (v − u) ⊗ (v − u)dv, q =
∫
R3

f (v − u) |v − u|2 dv, (5)

where n, u, T , P , q are, respectively, flow number density, bulk-velocity, temperature, pressure-tensor, and heat-flux. Here, 
⊗ refers to the vector outer-product which, in index-notation, reads (a ⊗ b)i j = aib j for some vectors a and b. Throughout 
this work, we use u and v , respectively, to denote the first component of macroscopic and microscopic velocity.

The collision operator, Q, is expected to satisfy the following basic conditions:

– Mass/momentum/energy conservation:∫
R3

Qdv =
∫
R3

v Qdv =
∫
R3

|v|2 Qdv = 0. (6)

– H-theorem:

H =
∫
R3

∂t
(

f ln( f )
)

dv +
∫
R3

∇x · (v f ln( f )
)

dv ≤ 0, or
∫
R3

Q( f ) ln( f )dv ≤ 0, (7)

– Equilibrium state is Maxwellian:

Q = 0 ⇔
∫
R3

ln( f )Qdv = 0 ⇔ f = M = n

(π T )3/2
exp

(
− |v − u|2

T

)
. (8)

– Weak form:∫
R3

Q�(v)dv = 1

4

1

Kn

∫
R3

∫
R3

∫
S2

B[ f (v ′) f (v ′∗) − f (v) f (v∗)]
(
�(v) + �(v∗) − �(v ′) − �(v ′∗)

)
dω dv∗ dv. (9)

For non-linear systems, the total amount of entropy, 
∫

Hdx, does not increase in time, which is a generalization of the 
weighted L2-energy bound for the linear systems. H-theorem plays an important role in the well-posedness of Boltzmann 
equation [17], including convergence [14]. Therefore, it is natural to seek numerical schemes which satisfy equation (7)
discretely. The primary objective of the present work is to construct a (high order) entropy stable scheme for Boltzmann 
equation which can be used for studying critical problems such as turbulence. We mention that it is straightforward to 
construct first order monotone entropy stable scheme along the lines of [31,32,57]. We are interested in high resolution 
schemes. To the best of our knowledge, this paper is the first attempt to construct entropy stable schemes for the Boltzmann 
equation, their implementation, and application.

In the section, 2, that follows, we describe a method of constructing high order entropy stable schemes for Boltzmann 
equation. We propose an entropy-stable flux in the process. Section 3 describes a class of high order collocated discontin-
uous Galerkin (DG) schemes which satisfy integration by parts at a discrete level. Due to this property, these classes of DG 
schemes can be modified to fulfill an arbitrary entropy condition, while maintaining conservation and high order accuracy. 
Such schemes are referred as entropy stable DG (EDG) schemes. EDG is utilized to construct a one-dimensional semi-
discrete scheme for Boltzmann equation in section 3.3. The section also provides proof for conservation and entropy-decay. 
The fully-discrete scheme is detailed in section 4. Numerical tests are provided in section 5 and 6.

2. Entropy stable fluxes for Boltzmann equation

Consider a system of one dimensional hyperbolic conservation laws

f t + g( f )x = 0, f (x,0) = f 0(x). (10)

Here f = ( f1, ..., f j)
T is the state vector of unknowns and g( f ) = (g1, ..., g j)

T, the flux, is a vector valued function of j
components, equipped with a j × j Jacobian matrix,
3
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∂ g/∂ f =
[

∂ g( f )

∂ f1
· · · ∂ g( f )

∂ f j

]
=

⎡
⎢⎢⎢⎢⎢⎣

∂ g1

∂ f1
· · · ∂ g1

∂ f j
...

. . .
...

∂ g j

∂ f1
· · · ∂ g j

∂ f j

⎤
⎥⎥⎥⎥⎥⎦ ,

with j real eigenvalues, {g1( f ) ≤ g2( f ) ≤ . . . g j( f )}, and a complete set of j linearly independent right-eigenvectors. We 
are interested in the entropy solutions [62] of equation (10), i.e., bounded solutions in the sense of distributions [53] which 
satisfy Lax’s [48] entropy inequalities,

A( f )t + B( f )x ≤ 0, (11)

for any convex functional A( f ) satisfying A′′( f ) ≤ 0 and the corresponding flux

B( f ) =
f∫

A′( f ) g ′( f )d f =⇒ B ′( f ) = A′( f ) g ′( f ). (12)

Here A′ and A′′ , respectively, denote the first and second derivative of A with respect to f . A( f ) is generally referred as 
entropy functional, and B( f ) entropy flux. For systems with convex entropy, one can define entropy variables

aT = A′( f ) = ∂ A/∂ f . (13)

Other way around, equation (11) can be obtained by left-multiplying aT to equation (10) and using equation (12).
The convexity guarantees that the mapping between state and entropy variables, f 
→ a, is one-to-one; and therefore we 

may recast equation (10) as

f (a)t + b( f (a))x = 0 =⇒ f ′(a)at + b′(a)ax = 0. (14)

One can assert that f ′(a) and b′(a) are both symmetric, so there exist functions ϕ(a) and ψ(a), called potential function 
and potential fluxes (cf. [54,30]), such that

ϕ′(a) = f (a)T, ψ ′(a) = b(a)T, (15)

and therefore

ϕ(a) = f (a)Ta − A( f (a)), ψ(a) = b(a)Ta − B( f (a)), (16)

using equations (12), (13), and symmetry.
Next, we multiply (14) by aT, use (16), and integrate over a reference physical space [α, β] to find

β∫
α

dx A( f )t + (
B(β) − B(α)

) =
β∫

α

dx (ax)
T g − ψ(a)

∣∣∣β
α

(17)

Comparing equations (11) and (17), we arrive at two simple definitions: a) when the right side of equation (17) vanishes, 
the scheme is entropy conservative; b) when the right side is less than zero, the scheme is entropy stable. Equation (17)
prompts us to introduce two point functions.

Lemma 2.1 (Harten [30], Osher [57], Tadmor [61], Shu [43]). Suppose gs(a(α), a(β)) is a scalar monotone function, non-decreasing in 
first argument and non-increasing in second argument. Then gs is entropy stable.

Proof. Let aα = a(α), aβ = a(β), and so on. By the mean value theorem, there exists aα < aγ < aβ such that

ψ(aβ) − ψ(aα) = (aβ − aα)b(aγ ) = (aβ − aα)g( f (aγ ))

Since f (a) is an increasing function, f (aα) < f (aγ ) < f (aβ). By the monotonicity of gs , we recover

( fβ − fα)
(

gs( fα, fβ) − g( fγ )
) ≤ 0 =⇒ (

ψ(aβ) − ψ(aα)
)− (aβ − aα)gs( fα, fβ) ≤ 0, (18)

where f� = f (a�). �
The idea can be generalized to systems [62,8,10] utilizing convexity. We will directly state the needed theorems.
4



S. Jaiswal Journal of Computational Physics 463 (2022) 111289
Corollary 2.2 (Tadmor [61], Carpenter [8], Shu [10]). A consistent, symmetric two-point numerical flux gs( f α, f β) is

- entropy conservative if

(aβ − aα)T gs( f α, f β) − (
ψβ − ψα

) = 0

- entropy stable if

(aβ − aα)T gs( f α, f β) − (
ψβ − ψα

) ≤ 0

- symmetric and consistent in the sense that gs( f (x), f (y)) = g( f (x)), and therefore

∂ g

∂x
(x) = ∂ gs

∂x
(x, x) + ∂ gs

∂ y
(x, x) = 2

∂ gs

∂ y
(x, x),

where aα/β and ψα/β are entropy variables and potential fluxes at the left (α) and right (β) states.

For scalar systems (cf. (18)),

gs =
⎧⎨
⎩

ψβ − ψα

aβ − aα
fα �= fβ

g( fα) fα = fβ

,

is unique; whereas for multi-component systems, the equation is undetermined. It can be solved using eigenvalue decom-
position (Theorem 6.1 of [62]), however is expensive in practice. Historically, such ideas have also appeared early for high 
order phase field equations [20,18].

To put aforementioned ideas into Boltzmann equation context, we discretize (1) in velocity space.

Definition 2.3 (Discretization in velocity space). To discretize v , we employ finite difference. Each velocity component vi (i ∈
{1, . . . , 3}) is discretized uniformly with N points in the interval [−L, L]. The grid points, vi , are chosen as −L +(m −1/2)
v , 
with m = 1, . . . , N and 
v = 2L/N . We use v j ∈R3 with j = 1, . . . , N3 to denote the velocity grid point, and ϑ j = 
v3 to 
denote the associated weight. For clarity of notation, let Nv = N3. We assume that the velocity space is sufficiently resolved 
such that (6) holds discretely.2

Using this, we define the state vector f with f j = f (t, x, v j); and the flux vector g with g j = v j f (t, x, v j). Comparing 
(7) and (11), we get

A( f j) = f j ln( f j), B( f j) = v j f j ln( f j), (19)

with

a j = 1 + ln( f j), ψ( f j) = v j f j, gs( f j,β , f j,α) = v j
(

f j,β − f j,α
)

ln( f j,β) − ln( f j,α)
. (20)

The statement of H-theorem (7) also contains integration over the velocity space. This will be enforced once we introduce 
time-discretization.

Remark 2.4. (19), (20) utilize the “physical” entropy. However, our procedure is general. It is possible to find a family of 
such entropy pairs. We use (19), (20) for a concise demonstration of the idea in the present work.

3. A semi-discrete high order entropy stable scheme in one-dimension

Equations (20) are non-linear. To enforce them at a discrete level, we need a specific class of numerical schemes. In 
this section, we describe the EDG spatial discretization schemes that will help us construct entropy stable scheme for 
Boltzmann equation. We prefer DG because most of the problems of relevance are multi-dimensional by nature, for example 
turbulence is a three-dimensional phenomenon. Compared to high-order finite volume/difference methods, DG provides easy 
formulation on arbitrary meshes, high-order flux reconstruction, straightforward implementation of boundary conditions, 
as well as linear scaling on parallel processors due to the compactness of the scheme. Historically speaking, classical DG 

2 We use a Fourier-spectral method (see [40] for details) for evaluating the collision operator. These methods rely on convolutive-decomposition of the 
collision operator. The resulting convolutions are evaluated using fast Fourier-transform (FFT). FFT is naturally performed (and faster) on uniform grids. 
Note that, one can, in-principle, use non-uniform velocity grid and/or possibly other approaches for evaluating the collision operator.
5
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schemes for Boltzmann equation have been proposed in [40], extended to multi-species in [41], and implemented in [42, 
Table 3] with a parallel efficiency close to 99%. Recent works in this direction include construction of DG schemes for Lattice-
Boltzmann system [26]; h / p adaptive modal/nodal DG [39] and isogeometric [38] schemes for full Boltzmann equation 
and relaxation-type kinetic models; DG schemes for Grad’s moment system [64]; dynamical low-rank methods for kinetic 
equation [19] and non-linear Boltzmann equation [35]; and a mode cut-off strategy for solving high-speed problems [36].

First, we, recall that DG methods assume that solution within an element of the discretized domain, may be expressed 
as a polynomial. Therefore, all the operations in the physical space, including, gradient, divergence, curl, are element local 
operators. For example, derivative of a function is simply the matrix-vector product of the coefficients of the polynomial and 
the derivative of the basis of the polynomial. Because, there is no universal basis for polynomials, there exists a wide class 
of DG methods [11,45,34,8], each with different properties. A certain class of DG operators can be constructed to mimic 
summation by part property [27] at a discrete level. Due to this property, these classes of DG schemes can be modified to 
fulfill an arbitrary entropy condition, while maintaining conservation and high order accuracy.

3.1. Summation by parts

Consider a reference element, I = [−1, 1], associated with Gauss-Legendre-Lobatto (GLL) quadrature points

−1 = ξ0 < ξ1 · · · ξp = 1 (21)

and the quadrature weights {wr}p
r=0. Define the Lagrange interpolating polynomials,

�r(ξ) :=
p∏

q=0q �=r

ξ − ξq

ξr − ξq
, (22)

such that �r(ξq) = δrq where δ is the standard Kronecker delta function. Then, the discrete inner product of two functions f
and g are

( f , g) =
∫
I

f g dξ ≈
p∑

q=0

f (ξq) g(ξq) wq. (23)

It can be shown that for any l1, l2 ∈ {�0, . . . , �p}, integration-by-parts yields∫
I

l1
dl2
dξ

dξ +
∫
I

l2
dl1
dξ

dξ = l1l2
∣∣∣1−1

(24)

The nodal mass matrix, difference matrix, and stiffness matrix, respectively, are defined as

Mrs =
∫
I

�r(ξ) �s(ξ)dξ ≈ δrqδsq wq, Drq = �′
q(ξr), Srs =

∫
I

�r(ξ) �′
s(ξ)dξ. (25)

For convenience, we define a diagonal boundary matrix

B = diag
(−1 0 . . . 0 1

)T
, (26)

equation (24) holds for any polynomial assuming a sufficiently accurate quadrature rule, or under analytical integration. The 
advantage of the Lagrange polynomial constructed on GLL quadrature is that equation (24) holds discretely.

Lemma 3.1 (Gassner [27]). The aforementioned matrices satisfy the following properties

- Discrete summation by parts

S = M D, M D + DTM = S + ST = B. (27)

- For each 0 ≤ r ≤ p we have

p∑
q=0

Drq =
p∑

q=0

Srq = 0,

p∑
q=0

Sqr = τr =

⎧⎪⎨
⎪⎩

−1 r = 0

1 r = p

0 1 ≤ r ≤ p − 1.

(28)

A general construction procedure can be found in [21].
6
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3.2. A semi-discrete DG scheme for Boltzmann equation

Let us first return to equation (10) and add the collision operator Q( f ) to the right side. Our starting point is the 
classical DG scheme [11]. Given a domain decomposition

x1/2 < x3/2 < · · · < xNe+1/2, Ie = [xe−1/2, xe+1/2], 
xe = xe+1/2 − xe−1/2

and the discrete DG space of orthonormal Legendre polynomial of degree p

V p
h = {φh : φh | Ie ∈ [P p(Ie)] j, 1 ≤ e ≤ Ne}

we seek f h ∈ V p
h such that for each φh ∈ V p

h and 1 ≤ e ≤ Ne ,∫
Ie

∂ f h

∂t
φhdx −

∫
Ie

g( f h)
T dφh

dx
dx = − ĝT

e+1/2φh(x−
e+1/2) + ĝT

e−1/2φh(x+
e−1/2) + 1

Kn

∫
Ie

Q( f h, f h)φh dx (29)

where ĝe+1/2 is a single-valued numerical flux at the element interface, depending on the values of numerical solution from 
both sides

ĝe+1/2 = ĝ
(

f h(x−
e+1/2), f h(x+

e+1/2)
)

(30)

equation (29) is usually called the weak form. We obtain the strong form after a simple integration by parts∫
Ie

∂ f h

∂t
φhdx −

∫
Ie

g( f h)
T dφh

dx
dx = − (

g( f h(x−
e+1/2)) − ĝe+1/2

)T
φh(x−

e+1/2)

+ (g( f h(x+
e−1/2)) − ĝe−1/2)

Tφh(x+
e−1/2) + 1

Kn

∫
Ie

Q( f h, f h)φh dx. (31)

By the change of variables between Ie and the reference element I = [−1, 1]

xe(ξ) = xe−1/2
(1 − ξ)

2
+ xe+1/2

(1 + ξ)

2
(32)

the weak form, equation (29), on I is


xe

2

∫
I

∂ f h

∂t
φhdξ −

∫
I

g( f h)
T dφh

dξ
dξ = − ĝT

e+1/2φh(xe(1)) + ĝT
e−1/2φh(xe(−1)) + 1

Kn

∫
I

Q( f h, f h)φh dξ. (33)

In vector notations, equation (33) can be recast as


xe

2
M

d �f e

dt
− ST �ge = −B �ge

† + 
xe

2
MQ

(
( �f e

)T, ( �f e
)T)T

, (34)

where

�f e =
⎡
⎢⎣

f h(xe(ξ0))
...

f h(xe(ξk))

⎤
⎥⎦ , �ge =

⎡
⎢⎣

gh(xe(ξ0))
...

gh(xe(ξk))

⎤
⎥⎦ , �ge

† =

⎡
⎢⎢⎢⎢⎢⎣

ĝe−1/2
0
...

0
ĝe+1/2

⎤
⎥⎥⎥⎥⎥⎦ ,

M = M ⊗ INv , D = D ⊗ INv , S = S ⊗ INv , B = B ⊗ INv . (35)

Here �f e
, �ge , �ge

† , each, are matrices of dimension Np × Nv ; INv is an identity matrix of size Nv × Nv ; and M , D , S , B , each, 
are matrices of dimension Np × Np . Note that Q is an operator which is local in the physical space, so it takes a row of �f e

as input, and outputs a row vector; which is the reason for using transpose on right side of equation (34). We may simplify 
equation (34) as

d �f e

dt
− 2


xe
(M−1 DT M)�ge = − 2


xe
M−1 B �ge

† + 1

Kn
Q
(
( �f e

)T, ( �f e
)T)T

. (36)

Similarly the strong form equation (31) can be recast in vector notations as
7
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d �f e

dt
+ 2


xe
D �ge = 2


xe
M−1 B(�ge − �ge

†) + 1

Kn
Q
(
( �f e

)T, ( �f e
)T)T

. (37)

An important takeaway is that non-linear operators, local to the physical space, are evaluated utilizing the Kronecker delta 
property of the basis. This idea results in the fastest-known discontinuous Galerkin solvers for non-linear Boltzmann equa-
tion [42].

3.3. A semi-discrete entropy stable scheme for Boltzmann equation on single element

We begin with a description of an entropy stable scheme for Boltzmann equation on a single element with periodic or 
compactly supported boundary condition. First, we recast equation (1) in terms of entropy flux following section (2) as

f t + 2(gs)x = Q( f , f ) (38)

Utilizing the idea put forth in the previous section, this can be discretized as (dropping e for simplicity)

d f r

dt
+

p∑
q=0

4


x
Drq gs( f r, f q) = 2


x

τr

wr
(gr − g†,r) + 1

Kn
Q
(

f r, f r

)
, r = 0, . . . , p. (39)

This yields the following set of discrete conservation laws.

Theorem 3.2. The scheme (39) conserves mass, momentum, and energy i.e.,

∫
�x

∫
R3

f

⎛
⎝ 1

v
|v|2

⎞
⎠dv dx are independent of time,

which in discrete form reads

∑
j

p∑
r=0

f j,r

⎛
⎝ 1

v j

|v j|2

⎞
⎠ϑ j wr are independent of time. (40)

Proof. Let � j = (
1 v j |v j |2

)T
, then

d

dt

(∑
r, j

f j,r � j ϑ j wr

)
=

2


x

∑
r, j

τr
(

g j,r − g†, j,r
)
� j ϑ j − 4


x

∑
r, j,q

Drq gs( f j,r, f j,q)� j ϑ j wr

+ 1

Kn

∑
r, j

Q( f ·,r, f ·,r)� j ϑ j wr (collision invariants (6))

= 2


x

∑
r, j

τr
(

g j,r − g†, j,r
)
� j ϑ j − 4


x

∑
r, j,q

(M Drq) gs( f j,r, f j,q)� j ϑ j

= 2


x

∑
r, j

τr
(

g j,r − g†, j,r
)
� j ϑ j − 2


x

∑
r, j,q

(M Drq + Dqr M) gs( f j,r, f j,q)� j ϑ j

(symmetry)

= 2


x

∑
r, j

τr
(

g j,r − g†, j,r
)
� j ϑ j − 2


x

∑
r, j

τr g( f j,r)� j ϑ j

(summation by parts (27), (28))

= 2


x

∑
j

(
g†, j,k − g†, j,0

)
� j ϑ j (local conservation)

= 0 � (compactly supported boundary, single element, global conservation)
8
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Theorem 3.3. Let f (v ′) = f ′ , f (v ′∗) = f ′∗ , f (v∗) = f∗ . The scheme, equation (39), satisfies the entropy identity∫
�x

∫
R3

∂t
(

f ln( f )
)

dv = −1

4

1

Kn

∫
�x

∫
R3

∫
R3

∫
S2

B[ f ′ f ′∗ − f f∗] ln
( f ′ f ′∗

f f∗

)
dω dv∗ dv,

which in discrete form reads

∑
j,r

d

dt

(
f j,r ln( f j,r)

)
ϑ j wr + 1

4

∑
r, j

ϑ j wr

∫
R3

∫
S2

B[ f ′·,r f ′∗,·,r − f ·,r f∗,·,r] ln
( f ′·,r f ′∗,·,r

f ·,r f∗,·,r

)
dω dv∗ = 0. (41)

Proof. Multiply equation (39) by a j,r = (1 + ln( f j,r)) we recover

∑
j,r

a j,r
d f j,r

dt
ϑ j wr +

∑
r, j,q

4


x
a j,r Drq gs( f j,r, f j,q)ϑ j wr = 2


x

∑
j,r

τr a j,r(g j,r − g†, j,r)ϑ j + 1

Kn

∑
j,r

a j,rQϑ j wr

Term 1:∑
j,r

a j,r
d f j,r

dt
ϑ j wr =

∑
j,r

(1 + ln( f j,r))
d f j,r

dt
ϑ j wr =

∑
j,r

d

dt

(
f j,r ln( f j,r)

)
ϑ j wr

Term 2:∑
r, j,q

4


x
a j,r Drq gs( f j,r, f j,q)ϑ j wr = 2


x

∑
r, j,q

a j,r (Drq − Dqr + (M−1 B)rq) gs( f j,r, f j,q)ϑ j wr

(summation by parts (27))

= 2


x

∑
r, j

a j,r τr g j,r ϑ j + 2


x

∑
r, j,q

Drq (a j,r − a j,q)gs( f j,r, f j,q)ϑ j wr

= 2


x

∑
r, j

a j,r τr g j,r ϑ j + 2


x

∑
r, j,q

Drq (ψ j,r − ψ j,q)ϑ j wr

= 2


x

∑
r, j

τr (a j,r g j,r − ψ j,r)ϑ j

Term 4:

∑
r, j

a j,rQ( f ·,r, f ·,r)ϑ j wr = −1

4

∑
r, j

ϑ j wr

∫
R3

∫
S2

B[ f ′·,r f ′∗,·,r − f ·,r f∗,·,r] ln
( f ′·,r f ′∗,·,r

f ·,r f∗,·,r

)
dω dv∗

(weak form (9))

Subtracting Term 3 from Term 2, we recover

2


x

∑
r, j

τr (a j,r g j,r−ψ j,r)ϑ j− 2


x

∑
j,r

τr a j,r(g j,r−g†, j,r)ϑ j = 2


x

∑
r, j

τr (a j,r g†, j,r − ψ j,r)ϑ j

= 2


x

∑
j

(
(ψ j,p − a j,p g†, j,k) − (

ψ j,0 − a j,0 g†, j,0
))

ϑ j

(local conservation)

= 0

(global conservation if g†, j is entropy conservative)

Utilizing these terms, we recover equation (41). �

9
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3.4. A semi-discrete entropy stable discrete scheme for Boltzmann equation on multiple elements

The last step of Theorem 3.3 requires g†, j to be entropy conservative. One may let g†, j be the entropy conservative 
flux, gs , yielding an entropy conservative scheme. However, entropy should be dissipated at shock waves and entropy 
conservative schemes will produce strong oscillations near shocks (cf. Fig. (4) in [63]). Dispersive oscillations on the mesh 
scale are observed due to the absence of any dissipation mechanism [50,52] since entropy vanishes at discontinuities. To 
this end, we may utilize the upwind numerical fluxes which are well-known to be entropy stable. Upwinding works very 
well for kinetic systems and has been central to construction of many kinetic schemes [59,44]. Since we are dealing with 
constant advection system, the upwind flux can be simplified as

ĝe−1/2, j =
{

g( f j(x+
e−1/2)) v j · n < 0

g( f j(x−
e−1/2)) v j · n ≥ 0

, e = 1, . . . , Ne, (42)

where n is the interface normal. Alternatively, one may add an upwind term to the entropy-conservative flux [37]

ĝe−1/2, j = gs( f j(x+
e−1/2), f j(x−

e−1/2)) − 1

2
|v j|

(
f j(x+

e−1/2) − f j(x−
e−1/2)

)
, e = 1, . . . , Ne, (43)

so that entropy is dissipated at shock waves.
The entropy stable scheme on multiple elements reads as

d f e
j,r

dt
+

p∑
q=0

4


xe
Drq gs( f e

j,r, f e
j,q) = 2


xe

τr

wr
(ge

j,r − ĝe
†, j,r) + 1

Kn
Q
(

f e
j,r, f e

j,r

)
. (44)

It can be recast in a conservative form along the lines of [62,8,10]

d f e
j,r

dt
+ 2


xe

1

wr

(
ge

j,r+1/2 − ge
j,r−1/2

) = Q( f e·,r, f e·,r)

ge
j,r+1/2 =

⎧⎪⎪⎨
⎪⎪⎩

ĝe−1/2, j r = −1

ĝe+1/2, j r = p

2
∑r

p=0
∑p

q=r+1 S pq gs( f e
j,p, f e

j,q) 0 ≤ r ≤ p − 1

. (45)

The entropy stability on multiple elements reads as

d

dt

(
f e

j,r ln( f e
j,r)

)+
p∑

q=0

4


xe
Drq ae

j,r gs( f e
j,r, f e

j,q) − 2


xe

τr

wr
ae

j,r (ge
j,r − ĝe

†, j,r) ≤ 0, (46)

and can be also recast in a conservative form as

d

dt

(
f e

j,r ln( f e
j,r)

)+ 2


xe

1

wr

(
Ge

j,r+1/2 − Ge
j,r−1/2

) ≤ 0

Ge
j,r+1/2 =

⎧⎪⎪⎨
⎪⎪⎩

1
2

(
(ae−1

j,p + ae
j,0)ĝe−1/2, j − (ψe−1

j,p + ψe
j,0)

)
r = −1

1
2

(
(ae

j,p + ae+1
j,0 )ĝe+1/2, j − (ψe

j,p + ψe+1
j,0 )

)
r = p∑r

p=0
∑p

q=r+1 S pq
(
(ae

j,p + ae
j,q) gs( f e

j,p, f e
j,q) − (ψe

j,p + ψe
j,q)

)
0 ≤ r ≤ p − 1

. (47)

To enforce the velocity averaging in equation (47), we need to fully-discretize the scheme (to be described later).

3.5. A positivity-preserving limiter for Boltzmann equation

The probability distribution function (PDF), f , is naturally non-negative. A discrete scheme must ensure that its values 
are within the physical bounds. A simple positivity preserving limiter can be constructed along the lines of [67,68] as

- Compute the element average as

f̄ e
j =

∑
r

f e
j,r wr/2

- Define a lower bound ε = min j(10−13, f̄ j)
10
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- In each element, modify the probability distribution as

f̆ e
j,r = f̄ e

j + θ1( f e
j,r − f̄ e

j ), θ1 = min

{∣∣∣ f̄ e
j − ε

f̄ e
j − ( f e

j )min

∣∣∣,1

}
, ( f e

j )min = min
r

f e
j,r .

It has been shown in [67] that this procedure preserves the formal accuracy of the scheme.

3.6. A slope limiter for Boltzmann equation

Positivity-preserving limiter enforces the physical bound of the PDF. We note that the entropy stable schemes are stable 
in the presence of shocks. However, the solution may still contain oscillations. A slope limiter can be used for damping 
spurious oscillations. The procedure can be defined as follows [10]:

- Compute the element average as

f̄ e
j =

∑
r

f e
j,r wr/2

- In each element, modify the probability distribution as

f̆ e
j,0 = f̄ e

j + m( f e
j,0 − f̄ e

j , f̄ e
j − f̄ e+1

j , f̄ e−1
j − f̄ e

j ), f̆ e
j,p = f̄ e

j + m( f e
j,p − f̄ e

j , f̄ e+1
j − f̄ e

j , f̄ e
j − f̄ e−1

j ),

f̆ e
j,r = f̄ e

j + θ2( f e
j,r − f̄ e

j ), θ2 = ( f̆ e
j,0 − f̄ e

j ) + ( f̆ e
j,p − f̄ e

j )

( f e
j,0 − f̄ e

j ) + ( f e
j,p − f̄ e

j )
, r = {1, . . . , p − 1},

m(a1, . . . ,an) =
{

s min1≤i≤n |ae|, |s| = 1,

0 otherwise
, s = 1

n

n∑
i=1

sign(ae) (48)

- Reconstruct the solution as f e
j (ξq) = f e

j,r .

Slope limiters are known to destroy the formal accuracy of the scheme. For entropy stable schemes, the limiters are generally 
not required. Nonetheless, slope limiters will improve the robustness of the scheme. In non-ideal real-world non-smooth 
industrial level simulations, a numerical scheme must not break down at any cost. The limiter, equation (48), provably
satisfies the total variation diminishing (TVD) property for constant advection systems [11].

3.7. A high-order slope limiter for Boltzmann equation

(48) is TVD, however it may destroy the formal accuracy of the scheme. To maintain the formal accuracy of the scheme, 
at the cost of TVD property, we may use a high order moment limiter [5,33].

First, we recall that a central point in the construction of discontinuous Galerkin schemes is the equivalence relation [45,
34]

f e
j (ξ) =

p∑
r

f̂ e
j,r φr(ξ) =

p∑
q

f e
j (ξq) �r(ξ), φ ∈ V p

h ,

where f̂ e
j,r are called as modal values (polynomial coefficients), and f e

j (ξq) are called nodal values (they have a physical 
meaning that they represent the approximate solution at the point ξq since �rq = δrq). Mathematically speaking, f e

j (ξ) is the 
ground truth, and that should be independent of the projection space.

The high-order slope limiting procedure can be described as follows

- Compute the modal values f̂ e
j,r . To do this evaluate the basis at the Gauss-Legendre-Lobatto quadrature points. Let this 

basis be defined as a matrix, V = {φ0, . . . , φp}, of dimension Rp+1 ×Rp+1 such that the polynomial modes are placed 
as columns of the matrix. Then f̂ e

j,r = V−1 f e
j (ξq)

- In each element, modify the probability distribution as

f̆ e
j,r = m( f̂ e

j,r, θ1( f̂ e+1
j,r−1 − f̂ e

j,r−1), θ1( f̂ e
j,r−1 − f̂ e−1

j,r−1)), κ = √
(2r + 1)(2r + 3), r = {p, . . . ,1}, (49)

where θ1 ∼ O (κ−1) is a free parameter. Note that the limiting procedure is done from top-to-bottom. If the top mode 
is not limited i.e., the m function returns the first argument, we do not limit the lower mode. This is the reason that 
11
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the solution retains as high order accuracy as possible. The constant κ comes from the fact that orthonormal Legendre 
polynomials, our basis functions, satisfy a recurrence relation√

2p + 1 P p = 1√
2p + 3

P ′
p+1 − 1√

2p − 1
P ′

p−1.

- Reconstruct the solution as f e
j (ξq) = V f̆ e

j,r .

An intuition behind such high order limiters can be found in [46]. Simply speaking, equation (49) aims to control spurious 
growth in f̂ j,r — which is approximately the rth derivative of the solution — by comparing them to the forward and 
backward differences of the (r − 1)th derivative, which are alternative approximations to the rth derivative. From a WENO 
viewpoint, equation (49) may be reinterpreted as smoothness indicators in hiding: it tries to estimate how smooth the 
solution and its derivatives are.

4. A fully-discrete positivity-preserving implicit-explicit high order entropy stable scheme

In this section, we describe a first-order implicit-explicit time-discretization for (38). Semi-discrete analysis is a crucial 
assumption [10]. A fully discrete entropy stability analysis is available for first-order time-integration schemes [51]. The 
entropy stability of high-order schemes equipped with high-order time-integration is still an open problem, particularly for 
non-linear systems.

4.1. The implicit-explicit time discretization

Denoting the distribution function at time-index l by f l , and the transport operator by T ( f ), an implicit-explicit 
scheme [22,15] for equation (1) or (38) reads

f (1) = f l,

f (2) = f l − 
t T ( f (1)) + 
t

Kn

[
Q( f (1), f (1)) −P( f (1))

]
+ 
t

Kn
P( f (2)),

f l+1 = f (2), (50)

where 
t = tl+1 − tl is time step, and P is the penalization operator.
In practical simulations, regions of flow are characterized by multiple scales (low and high Kn). As Kn → 0, the collision 

operator becomes stiff. Therefore, this scheme decomposes the Boltzmann equation into a stiff and non-stiff part, wherein 
the stiff part is treated implicitly, and the non-stiff part is treated explicitly so that the evolution is constrained only by 
the Courant–Friedrichs–Lewy condition. For the non-linear Boltzmann collision operators, this is achieved by penalizing the 
collision operator by a penalty function P( f ) i.e.,

−T ( f )︸ ︷︷ ︸
non stiff part

+ Q( f , f )

Kn︸ ︷︷ ︸
stiff part

= −T ( f ) + Q( f , f ) −P( f )

Kn︸ ︷︷ ︸
non-stiff part

+ P( f )

Kn︸ ︷︷ ︸
stiff part

. (51)

In equation (50), the penalization operator acts implicitly on f (2) . To develop an efficient iteration-free scheme, the 
penalization operator should be sufficiently simple, typically, linear, as far as the present literature is concerned. There is 
no fixed rule for selecting a penalization operator. The generally used criterion is to use an operator that preserves the 
asymptotic transition from the microscopic kinetic regime to the macroscopic fluid regime. In the present work, we utilize 
the BGK [2] operator (cf. [39, Appendix] for other choices) i.e.,

P( f ) = ν(M[ f ] − f ), (52)

where M is the Maxwellian.
As per [15], ν is selected so that it is a valid estimate for the largest value of the negative term in the Boltzmann 

operator i.e.,

ν ≥
∫
R3

∫
S2

B(|v − v∗|, cosχ) f (v∗)dω dv∗. (53)

Remark 4.1. We emphasize that there is no precise rule for selecting the optimal value of this parameter. We can simply 
utilize ν = max�x⊗�v ν . This results in a stable scheme (a simple analogy follows from local vs global Lax–Friedrichs flux. 
The penalty is simply a method of adding dissipation). But, for the generality of presentation, we let ν to be a function of 
�x: it is solely determined by the moments of probability distribution.
12
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Equation (50) may nonetheless appear implicit because of presence of P( f (2)) in the second equation. To this end, one 
can utilize the properties of the BGK and Boltzmann collision operator. We first define

U ( f ) =
∫
R3

⎛
⎝ 1

v
|v|2

⎞
⎠ f dv =

⎛
⎝ n

nu
3
2 nT + n|u|2

⎞
⎠ ,

and recognize that

U (M− f ) = U (P( f )) = U (Q( f , f )) = 0. (54)

The implicit assumption behind such a construction is that (54) is satisfied at a discrete level as well.
Now, we compute the moments of (50), which yields

U ( f (1)) = U ( f l),

U ( f (2)) = U ( f l) − 
t
(∫
R3

⎛
⎝ 1

v
|v|2

⎞
⎠T ( f (1))dv

)
,

U ( f l+1) = U ( f (2)). (55)

Here all the three equations can be computed explicitly. Once, U ( f (2)) is known i.e., (n(2), n(2)u(2), 32 n(2)T (2) + n(2)|u(2)|2), 
one can use them to construct M(n(2), u(2), T (2)) ≡ M( f (2)). Observe that when Kn → 0, f → M( f ), then equation (55)
degenerates to a forward-Euler scheme for solving the compressible Euler equation [22]. The procedure of computing mo-
ments of equation (50) to recover equation (55) is innocuous, however it will ultimately enforce the velocity averaging 
required, for example, in equation (47) to achieve entropy stability.

The final scheme then reads:

f (1) = f l,

f (2)
(

1 + (
t/Kn) ν(2)
)

= f l − 
t T ( f (1)) + 
t

Kn

[
Q( f (1), f (1)) − ν(1)(M( f (1)) − f (1))

]
+ 
t

Kn
ν(2)M( f (2)),

f l+1 = f (2). (56)

This scheme is positivity-preserving (PP) provided spatial discretization and collision operator are positivity-preserving. Our 
spatial discretization is already positivity-preserving. For positivity-preserving collision operator, the direct simulation Monte 
Carlo (DSMC) method [3], the discrete velocity method [56], or the entropic Fourier method [7] can be used.

4.2. Fully discrete scheme

In a more compact form, the fully-discrete version of (56) reads

f l+1,e
j,r

(
1 + 
t

Kn
νl+1,e

r

)
= f l,e

j,r − 
t T ( f l,e
j,r) + 
t

Kn

[
Q( f l,e·,r , f l,e·,r ) − νl,e

r (M( f l,e
j,r) − f l,e

j,r)
]
+ 
t

Kn
νl+1,e

r M( f l+1,e
j,r ),

(57)

where, for example,

T ( f l,e
j,r) =

p∑
q=0

4


xe
Drq gs( f l,e

j,r , f l,e
j,q) − 2


xe

τr

wr

(
gl,e

j,r − ĝl,e
†, j,r

)
, (58)

for one-dimensional physical space, and⎛
⎝ n

nu
3
2 nT + n|u|2

⎞
⎠l+1,e

r

=
⎛
⎝ n

nu
3
2 nT + n|u|2

⎞
⎠l,e

r

− 
t
∑

j

� jT ( f l,e
j,r)ϑ j . (59)

To construct M( f l+1,e
j,r ), we let

f ∗,e
j,r = f l,e

j,r − 
t T ( f l,e
j,r), U ( f l+1,e

j,r ) =
∑

j

� j f ∗,e
j,r ϑ j, Ml+1

j,r = M[U ( f l+1,e
j,r )]. (60)

Similarly, νl+1,e
r can be constructed from U ( f l+1,e

j,r ) or f ∗,e
j,r . Simply speaking, νl+1,e

r and U equip the system with an apriori
estimate of mass, energy and entropy.
13
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Remark 4.2. gs( f l,e
j,r , f

l,e
j,q) is numerically ill-posed when f l,e

j,r → f l,e
j,q . See appendix of [37] for a numerical recipe.

Equation (59) is a system of conservation laws with entropy, 
∫
R3 f ln( f )dv , and entropy flux∫

R3

� ⊗ v( fα − fβ)

ln( fα) − ln( fβ)
dv, (61)

where � = (
1 v |v|)T

. Neither equation (59) nor (61) are closed. However, in the limit of vanishing Knudsen number, 
f →M, (59) becomes a consistent discretization to the limiting Euler system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tn + ∇x · (nu) = 0,

∂t(nu) + ∇x · (nu ⊗ u + nT Id/2) = 0,

∂t E + ∇x ·
( 5

2
nT u + n|u|2 u

)
= 0,

(62)

where E = 3
2 nT + n|u|2, and Id is an identity matrix; with entropy

n ln
( n

(π T )3/2

)
− 3

2
n, (63)

and the entropy flux∫
R3

�
θα exp(−λα |v − uα|2) v

C1 − λα |v − uα |2 + λβ |v − uβ |2 dv −
∫
R3

�
θβ exp(−λβ |v − uβ |2) v

C1 − λα |v − uα |2 + λβ |v − uβ |2 dv, (64)

where

C1 = ln(θα) − ln(θβ), θ = n

(π T )3/2
, λ = 1

T
, M = θ exp(−λ|v − u|2).

It is difficult to find a closed form analytical expression for equation (64). However, observe that equation (63) is consistent 
with the theory put forward in [30], and can be rewritten in terms of Euler thermodynamic entropy as

−n(s + (ln(π) − 1))

γ − 1
, s = ln(p) − γ ln(n), γ = 5

3
.

Note that if h(s) = (s + (ln(π) −1))), then h′ −γ h′′ > 0, h′ > 0 [62]. Following the same argument put forward in section 3.3, 
it is easy to show that this limiting system is entropy-stable.

Remark 4.3. The aforementioned discussion can be easily extended to structured quadrilateral domains using a tensor prod-
uct construction. We will skip the details for brevity. We will directly present numerical tests in the following section.

5. Numerical tests in one-dimensional physical space

In this section, we present verification for the scheme given by equation (57). We emphasize that in one-dimensional 
physical space, Boltzmann equation is a five-dimensional equation system (1 space, 3 velocity, and 1 time). These systems 
are computationally demanding. For example, many of the problems reported in this section involve degrees of freedom on 
the order of hundred millions. Due to the quadratic nature of the collision operator, these test cases involve floating point 
operations on the order of hundred billions at every time step. To appreciate the computational cost, recall that Boltzmann 
collision operator has complexity of O (cN3 log(N), where c is algorithmic constant. This collision operator is called for each 
degree of freedom. Assume that our physical space consists of Ne = 128 elements, each with k = 2 order approximation. 
Furthermore assume that our velocity space consists of N = 48 points and let c = 32. Therefore, one requires floating point 
operations on order of 128 × 3 × 32 × 483 ≈ 1.39 × 109. If we evolve the system for 1000 steps, the total computation is 
on order of 1.39 trillion. Note that this kind of algorithmic intensity is similar to what one would generally expect from 
simulation of flow over a full-scale Boeing aircraft using compressible Euler or Navier-Stokes.

5.1. 1-D spatial accuracy: mixing regime

We begin with the spatial accuracy test in mixing regime i.e., Knudsen number is a function of space variable. This 
results in a wide range of mixing scales which is typical of practical aerodynamic problems. Tests akin to these have been 
widely used in kinetic theory [22] since analytical solutions for Boltzmann equation do not exist. The purpose of this case 
is to confirm high order spatial accuracy for variable Kn. Consider equation (1) with initial condition as
14
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Table 1
Accuracy test for 1D-3V Boltzmann equation with entropy stable flux.

↓ p h h/2 h/4 h/8 h/16 ≈ Rate

ε0 = 10−4

2 4 8 16 32
1 1.95 × 10−5 4.10 × 10−6 1.15 × 10−6 3.01 × 10−7 7.77 × 10−8 1.96
2 1.51 × 10−6 6.39 × 10−7 7.38 × 10−8 9.39 × 10−9 1.17 × 10−9 3.01

ε0 = 10−4 (with high order limiter (49) on all elements)
2 4 8 16 32

1 1.72 × 10−5 7.50 × 10−6 2.09 × 10−6 4.70 × 10−7 1.07 × 10−7 2.14
2 6.09 × 10−6 5.60 × 10−6 8.72 × 10−7 5.06 × 10−8 5.97 × 10−9 3.08

ε0 = 10−4 (with TVD limiter (48) on all elements)
2 4 8 16 32

1 1.72 × 10−5 7.48 × 10−6 2.10 × 10−6 4.52 × 10−7 1.01 × 10−7 2.16
2 5.88 × 10−6 5.48 × 10−6 1.80 × 10−6 4.36 × 10−7 1.16 × 10−7 1.91

f (0, x, v) = 1

2

(
M(n, u, T ) +M(n,−u, T )

)
, (65)

with

n = 1 + 0.2 sin(πx), u =
(1

2
,0,0

)
, T = 1

1 + 0.2 sin(πx)
,

Kn = 1

2

(
tanh(6 − 5 x) + tanh(−4 + 5 x)

)
+ ε0, (66)

where ε0 is some fixed positive constant. The spatial domain is taken as x ∈ [0, 2] with periodic boundary condition. The 
velocity domain is truncated into [−|v|max, |v|max]3 with |v|max = 5 and discretized by a finite difference scheme using 
Nv = 243 grid points. We choose h = 
x = 2/Ne and set 
t � c 
x/|v|max, where c is CFL number of the p-order DG 
scheme. Since the exact solution is not available, the numerical solution on a finer mesh 
x/2 is used as a reference 
solution to compute the error for the solution on the mesh size 
x i.e.,

E
t,
x := ‖ f
t,
x − f
t/2,
x/2‖L2
x,v

= 1

(2|v|max)3

1

2

(∫
�v

∫
�x

| f
t,
x − f
t/2,
x/2|2 dx dv
)1/2

. (67)

The solution is computed for ε0 = {10−4} with Ne = {2, 4, 8, 16, 32, 64}. In Table 1, we present the error, equation (67), 
at t = 0.1 using the Boltzmann equation with entropy stable flux. The scheme recovers the standard convergence rate of 
nodal schemes constructed on Gauss-Lobatto quadrature for non-linear problems [34,33]. Next, to verify that the limiters 
are consistent (produce correct reconstruction with entropy-stable flux), we apply limiter on all elements. In Table 1, we 
show the corresponding numerical evidence.

5.2. 1-D conservation test: shock-front propagation

Next, we consider two initial-value Riemann problems involving shock-front propagation. A normal shock is placed at 
x = 0.5 in a unit domain, x ∈ [0, 1]; and then marched in time. The full set of simulation parameters have been reiterated 
in Table 2.

In the first test case, Case SF-01, the shock is kept stationary. We run the test for 20,000 steps. The results have been 
shown in Fig. 1. The reference results are obtained using OpenFOAM [28] (with adiabatic index, γ = 5/3) which implements 
the Kurganov-Tadmor [47] scheme. The results show that error in mean velocity is 0.2/u0 × 100 ≈ 0.05%. This asserts that 
the scheme is conservative. The error can be decreased further by refining the velocity grid.

In the second test case, Case SF-02, the shock is assigned an initial velocity along x-axis. We again run the test for 
20,000 steps. The results have been shown in Fig. 1. First, because our DG approximation endows every element with a 
solution expressed as a polynomial, we expect to see the classical Gibb’s phenomenon caused by approximating discon-
tinuous functions using a (piecewise) continuous polynomial. In classical DG, one uses a slope limiter which smooths out 
these oscillations. In continuous Galerkin, one adds shock-capturing terms [6] to the equation system to achieve the same. 
Both the ideas are related [12]. In entropy stable DG, we do not add such stabilization. Second, although the oscillations are 
present, we observe that the shock-front is propagated at a correct speed, and the scheme is stable. A crucial point to note 
here is: We use a first order time-marching scheme, and we still recover a sharp shock front. As a point of reference, the 
streamlined methods [6] add remarkably high amount of diffusion for these kinds of problems (see [29]).
15
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Table 2
Numerical parameters for shock-front propagation test cases. The 
molecular parameters for “Air” are as indicated in Appendix-A of 
[3]. We solve the Boltzmann equation in non-dimensional form 
(cf. [40] for non-dimensionalization convention). The characteris-
tic variables indicated above are needed there. The variables that 
remain unchanged, are not repeated.

Parameter SF-01 SF-02

Working Gas Air
Physical space (m) [0, 1]
Characteristic length: H0 (m) 1
Char. velocity: u0 (m/s) 400.05
Char. time: t0 (s) 0.0025
Char. temperature: T0 (K) 278.746
Char. no. density: n0 (m−3) 2.599 × 1025

Velocity space [−5.44u0, 5.44u0]3

Points in velocity mesh: Nv 323

Number of elements: Ne 128
Polynomial degree: p 2
Time step: 
t/t0: 1 × 10−4

Final time: T /t0: 2

Upstream region: [0, 0.5]:
Density: n/n0 1.4
Velocity: u/u0 0 0.1
Temperature: T /T0 0.714

Downstream region: (0.5, 1]:
Density: n/n0 1
Velocity: u/u0 0 0.1
Temperature: T /T0 1

5.3. 1-D initial-boundary value problem: Couette flow

In the present test case, we test the entropy fluxes for initial boundary value problem with fully diffuse wall boundary 
condition. Consider a standard 1-D Couette flow setup: A rarefied Argon gas is trapped between two walls in a millimeter 
domain. The left wall moves with velocity (0, −250, 0) m/s and the right wall with (0, 250, 0) m/s. Both the walls are at 
temperature of 273 K. We use the standard VHS model properties [3] for modeling Argon. We consider three (number 
densities, Kn): a) (3.537 × 1020, 3.7); b) (3.537 × 1021, 3.7 × 10−1); c) (3.537 × 1022, 3.7 × 10−2). All cases use a fixed 
time step of 1.5 × 10−8 s for a 4 element 3rd order DG scheme. The mesh is not resolved to O(Kn) [22]. The full set of 
simulation parameters have been reiterated in Table 3. The results have been presented in Fig. 2. Our scheme recovers the 
correct temperature and velocity which matches DSMC for a range of Knudsen numbers.

Note that the velocity recovered for this case using BGK model is generally consistent with the DSMC results. But the 
temperature predicted by BGK is inconsistent: it is remarkably high due to its Prandtl number defect. Our scheme recovers 
the correct temperature which matches DSMC thereby asserting that the scheme solves the actual Boltzmann equation 
asymptotically. BGK is merely used as a penalty (observe that BGK operator has been added and subtracted in equation (51)).

5.4. 1-D Sod-shock tube problem

In the current test case, we consider the classical Sod shock tube problem. The full set of simulation parameters have 
been reiterated in Table 4. In summary, we utilize four different (upstream, downstream) densities [kg/m3]: a) (1 × 10−6, 
0.125 × 10−6); b) (1 × 10−5, 0.125 × 10−5); c) (1 × 10−4, 0.125 × 10−4); d) (1 × 10−3, 0.125 × 10−3). These upstream 
densities correspond to Knudsen number [40] of a) 4.96 × 10−1; b) 4.96 × 10−2; c) 4.96 × 10−3; d) 4.96 × 10−4. We use 
a 256 element 3rd order DG scheme with a time step of ≈ 4 × 10−6 s for all cases. The velocity domain [−6.14, 6.14]3 is 
discretized using 323 points.

The results have been shown in Fig. 3: the symbols denote the results using entropy stable flux without limiter; the 
lines denote the results using traditional fluxes with TVD limiter given by equation (48). We emphasize that one should 
expect overshoots near contact discontinuities as seen in last row of Fig. 3. This is a known fact, for example, in one of the 
earliest papers on entropy-stable schemes (Fig. 4, [63]), author noted that such results demonstrate the purely dispersive 
character of the entropy stable schemes. Dispersive oscillations on the mesh scale are observed due to the absence of any 
dissipation mechanism [50,52] (because entropy vanishes at contact discontinuities, whereas in slope-limiters, there is dis-
sipation applied at contact discontinuities. Note that DG schemes have remarkable dissipation and dispersion properties [1]
and therefore they have very low numerical viscosity by virtue). The key point is: numerical solutions do not blow up. Since 
oscillations are on order of mesh scale, observe that in Fig. 4 of [63], they die down upon refining the mesh. In fact, in 
16
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Fig. 1. Shock front propagation: Variation of mass-density and mass-flux. Top row: Case SF-01, Bottom row: Case SF-02. Results after 20, 000 time-steps. 
EDG refers to Boltzmann equation with entropy stable flux without limiter; EDG (limited) refers to entropy stable flux with TVD limiter. Reference refers to 
results using OpenFOAM [28] Euler solver which implements the Kurganov-Tadmor [47] scheme. Observe that the error in mean velocity and momentum 
is 0.2/u0 × 100 ≈ 0.05%, which asserts that the scheme is conservative. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

a related paper on entropy-stable schemes [37], authors constructed a flux, equation (43), that adds necessary dissipation 
at shocks. The rationale is that for many calculations, the shock structure is of no interest and a far coarser resolution is 
adequate. Nevertheless, if one wants a visually smooth solution, a strategy is to introduce a TVD limiter at the end of the 
post-processing step.

In Fig. 4 we present a comparison of DSMC and the proposed method for the sod-shock tube problem at low Knudsen 
number. We observe an excellent agreement between the DSMC and the proposed scheme. Note that Sod-shock tube is a 
transient problem. In general, it’s difficult to obtain time-accurate results using DSMC. In our simulations, we have used 
1000 cells, 4000 particles per cell, and a time-step of 10−8 s (since the final time is 7 × 10−3 s, this results in 700,000 
time-steps). On an 8-core machine, these simulations took 153.39 hours each. There is still some statistical noise in the 
DSMC results which can be certainly reduced further by increasing the number of particles per cell, however, the same 
remains elusive from a computational viewpoint.

5.5. 1-D Lax-shock tube problem

Next, we consider the Lax shock tube problem. The full set of simulation parameters have been reiterated in Table 5. The 
results have been shown in Fig. 5: the symbols denote the results using entropy stable fluxes with TVD limiter; the lines 
17
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Table 3
Numerical parameters for Couette flow test case. The molecular parameters for “Ar” 
are as indicated in Appendix-A of [3].

Parameter C-01 C-02 C-03

Working Gas Ar
Physical space (mm) [0, 1]
Characteristic length: H0 (mm) 1
Char. velocity: u0 (m/s) 337.2
Char. temperature: T0 (K) 273
Char. no. density: n0 (m−3) 3.537 × 1020 3.537 × 1021 3.537 × 1022

Velocity space [−5u0, 5u0]3

Points in velocity mesh: Nv 243

Number of elements: Ne 4
Polynomial degree: p 2
Time step: 
t (s): 1.5 × 10−8

Initial conditions
Number density: n (m−3) 3.537 × 1020 3.537 × 1021 3.537 × 1022

Knudsen number: Kn 3.7 3.7 × 10−1 3.7 × 10−2

Velocity: u (m/s) (0,0,0)

Temperature: T (K) 273

Left wall conditions
Velocity: u (m/s) (0,−250,0)

Temperature: T (K) 273

Right wall conditions
Velocity: u (m/s) (0,250,0)

Temperature: T (K) 273

Fig. 2. 1-D Couette flow: Velocity and temperature using Boltzmann equation with entropy-stable flux without any limiter. The reference DSMC (lines) 
results were obtained using SPARTA [60].

denote the results using classical Boltzmann flux with TVD limiter (48). We observe a remarkably close agreement, both in 
near continuum regime (Euler limit), as well as the usual rarefied regime.

6. Numerical tests in two-dimensional physical space

6.1. 2-D heat-conduction in a square cavity

We consider heat-conduction in a unit milli-meter square cavity [0, 1 mm]2. The top wall is heated to 373 K, whereas 
other walls are kept at a constant temperature of 273 K. All the walls are at rest. At t > 0, this heat propagates through the 
domain. The exact simulation parameters have been provided in Table 6.
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Table 4
Numerical parameters for the Sod shock tube problem. The molecular parameters for “Air” are as indicated 
in Appendix-A of [3].

Parameter SOD-01 SOD-02 SOD-03 SOD-04

Working Gas Air
Physical space (m) [−5, 5]
Characteristic length: H0 (m) 1
Char. velocity: u0 (m/s) 400.05
Char. temperature: T0 (K) 278.746
Char. no. density: n0 (m−3) 2.599 × 1018 2.599 × 1019 2.599 × 1020 2.599 × 1021

Velocity space [−6.14u0, 6.14u0]3

Points in velocity mesh: Nv 323

Number of elements: Ne 256
Polynomial degree: p 2
Time step: 
t (s): 4 × 10−6

Upstream region: [−5, 0]:
Kn: 4.96 × 10−1 4.96 × 10−2 4.96 × 10−3 4.96 × 10−4

Density: n/n0 8
Velocity: u/u0 0
Temperature: T /T0 1.25

Downstream region: (0, 5]:
Density: n/n0 1
Velocity: u/u0 0
Temperature: T /T0 1

Table 5
Numerical parameters for the Lax shock tube problem.

Parameter LAX-01 LAX-02 LAX-03 LAX-04

Working Gas Air
Physical space (m) [−5, 5]
Characteristic length: H0 (m) 1
Char. velocity: u0 (m/s) 400.05
Char. temperature: T0 (K) 278.746
Char. no. density: n0 (m−3) 2.08 × 1019 2.08 × 1020 2.08 × 1022 2.08 × 1025

Velocity space [−9.89u0, 9.89u0]3

Points in velocity mesh: Nv 483

Number of elements: Ne 256
Polynomial degree: p 2
Time step: 
t (s): 2.5 × 10−6

Upstream region: [−5, 0]:
Kn: 6.2 × 10−2 6.2 × 10−3 6.2 × 10−5 6.2 × 10−8

Density: n/n0 0.445
Velocity: u/u0 0.6989
Temperature: T /T0 5.68

Downstream region: (0, 5]:
Density: n/n0 0.5
Velocity: u/u0 0
Temperature: T /T0 1.142

In Fig. 6, we illustrate the residual, ‖ f n+1 − f n‖, history as a function of non-dimensional time. Here f n is the distribution 
function at nth step. We observe that both the schemes produce qualitatively same behavior for “smooth” problems with 
temperature gradients.

In Fig. 7, we illustrate results from DG and EDG schemes at steady state. Ignoring statistical noise, the results from 
both DG and EDG schemes agree well with the DSMC simulations. To understand the differences between the DG and EDG 
schemes, in Fig. 8 we show the solution at different time instants. The results from EDG schemes agree very well with 
conventional DG scheme for Boltzmann equation.

6.2. 2-D lid-driven cavity flow

We consider lid-driven cavity flow problem. The flow is again setup in a unit milli-meter square cavity [0, 1 mm]2. 
The top wall is moving with a velocity of (0, 50, 0) m/s, whereas other walls are kept at rest. All the walls are assigned 
a temperature of 273 K. At t > 0, the flow develops due to shearing of fluid layers. The exact simulation parameters have 
been provided in Table 7.
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Fig. 3. Sod shock tube problem: Variation of conserved flow properties, viz. mass-density, mass-flux, and energy. Symbols denote the results from Boltzmann 
equation with entropy stable flux without any limiter; and lines denote the results from Boltzmann equation with classical flux and TVD limiter.

In Fig. 9, we illustrate the residual, ‖ f n+1 − f n‖, history as a function of non-dimensional time. Here f n is the distribution 
function at nth step. We observe that the residual from the entropy-stable DG scheme for the Boltzmann equation is lower 
for “smooth” problems with velocity-gradient.

In Fig. 9, we observe that the error-norm is on order of 10−7, and it doesn’t drop further. To appreciate why this is 
the case, first recall that we use a Fourier-spectral method [58,40] for evaluating the collision operator. A natural question 
is: How do these methods perform? In [58, Figs. (7, 8)], [55, Tab. (1)], [40, Fig. (1)] authors have solved the spatially-
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Fig. 4. Sod shock tube problem: Comparison of conserved flow properties from proposed method and direct simulation Monte Carlo (DSMC) method. 
Symbols denote the results from DSMC; and lines denote the results from Boltzmann equation with entropy stable flux without any limiter. Row 1: Kn= 
4.96 × 10−1, t = 3 × 10−3 s; Row 2: Kn= 4.96 × 10−1, t = 7 × 10−3 s; Row 3: Kn= 4.96 × 10−2, t = 3 × 10−3 s; Row 4: Kn= 4.96 × 10−2, t = 7 × 10−3 s.

homogeneous Boltzmann equation and have presented the error norms. In all these works, we see that the error-norm is 
on order of 10−7. As these methods are spectrally accurate, it is possible to reduce the error-norm further (cf. [55, Tab. (1)]). 
However, doing so incurs a tremendous amount of computational cost. Recall that we are solving a 6-dimensional problem 
(2-space, 3-velocity, 1 time).
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Fig. 5. Lax shock tube problem: Variation of conserved flow properties, viz. mass-density, mass-flux, and energy. Symbols denote the results from Boltzmann 
equation with entropy stable flux with TVD limiter; blue lines denote the results from Boltzmann equation with classical flux and TVD limiter; and black 
line refers to results using OpenFOAM [28] Euler solver which implements the Kurganov-Tadmor [47] scheme.

In Fig. 10, we illustrate results from DG and EDG schemes at steady state. Ignoring statistical noise, the results from 
both DG and EDG schemes agree well with the DSMC simulations. To understand the differences between the DG and EDG 
schemes, in Fig. 11 we show the solution at different time instants. The results from EDG schemes agree very well with 
conventional DG scheme for Boltzmann equation.
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Table 6
Test case from section 6.1: Numerical parameters for 2-D 
heat conduction case. The molecular parameters for “Ar” 
are as indicated in Appendix-A of [3].

Parameter Case HC-01

Working gas Ar
Physical space (mm) [0, 1]2

Characteristic length: H0 (mm) 1
Characteristic velocity: u0 (m/s) 337.2
Characteristic temperature: T0 (K) 273
Characteristic no. density: n0 (m−3) 3.469 × 1022

Characteristic time: t0 (s) 2.96 × 10−6

Velocity space [−5u0, 5u0]3

No. of points in velocity mesh: N3
v 243

Initialization conditions
Number density: n (m−3) 3.469 × 1022

Velocity: u (m/s) (0,0,0)

Temperature: T (K) 273

Top wall conditions
Velocity: u (m/s) (0,0,0)

Temperature: T (K) 373

Other wall conditions
Velocity: u (m/s) (0,0,0)

Temperature: T (K) 273

Fig. 6. Test case from section 6.1: Residual history of the convention DG scheme, and entropy-stable DG scheme for Boltzmann equation.

7. Conclusions

We have presented a high-order entropy-stable deterministic numerical method for the solution of the full Boltzmann 
equation. The method combines a summation-by-parts collocated discontinuous Galerkin scheme in physical space together 
with the proposed entropy stable flux. The resulting semi-discrete scheme is shown to be locally and globally conservative, 
and it satisfies the celebrated Boltzmann’s entropy inequality at a discrete level. This will ensure that the scheme converges 
to the unique entropy solution. A fully-discrete scheme is then constructed by utilizing a first order implicit-explicit dis-
cretization. The resulting schemes are iteration free, and suitable for solving problems in a wide range of Knudsen numbers, 
from continuum to free-molecular. The DG-type formulation employed in the present work has an element-local com-
pact nature which enables effective parallelization on massively parallel architectures, contrary to its predecessors such as 
weighted essentially non-oscillatory schemes.
S. Jaiswal Journal of Computational Physics 463 (2022) 111289
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Fig. 7. Test case from section 6.1: Results for 2-D heat conduction case at steady-state. In each of the plot, white lines indicate the results from DSMC 
simulations; whereas the background contour is from DG methods. The left column illustrates the results from conventional DG formulation for Boltzmann 
equation, whereas the right column shows the results from entropy-stable DG formulation for Boltzmann equation.
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Fig. 8. Test case from section 6.1: Results for 2-D heat conduction case at different times. In each of the plot, white lines indicate the results from 
conventional DG formulation for Boltzmann equation; whereas the background contour is from entropy-stable DG formulation for Boltzmann equation. The 
left column shows results at t = 2, whereas the right column shows results at t = 4.
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Table 7
Test case from section 6.2: Numerical parameters for 2-D 
lid-driven cavity case. The molecular parameters for “Ar” are 
as indicated in Appendix-A of [3].

Parameter Case LD-01

Working gas Ar
Physical space (mm) [0, 1]2

Characteristic length: H0 (mm) 1
Characteristic velocity: u0 (m/s) 337.2
Characteristic temperature: T0 (K) 273
Characteristic no. density: n0 (m−3) 1.678 × 1021

Characteristic time: t0 (s) 2.96 × 10−6

Velocity space [−6u0, 6u0]3

No. of points in velocity mesh: N3
v 483

Initialization conditions
Number density: n (m−3) 1.678 × 1021

Velocity: u (m/s) (0,0,0)

Temperature: T (K) 273

Top wall conditions
Velocity: u (m/s) (0,50,0)

Temperature: T (K) 273

Other wall conditions
Velocity: u (m/s) (0,0,0)

Temperature: T (K) 273

Fig. 9. Test case from section 6.2: Residual history of the convention DG scheme, and entropy-stable DG scheme for Boltzmann equation.

To verify the scheme, we carry out simulations on well-known Riemann and mixing regime problems. Many of these 
cases have been run with different Knudsen numbers to highlight the general nature of the scheme. The scheme is high 
order accurate and stable in presence of shocks both in continuum and rarefied regime. The present findings may open 
up direction for provably non-linearly stable schemes for the entire family of Boltzmann equations, for instance phonon 
Boltzmann for phonon transport, Fokker-Planck for ionic transport in charged plasmas, quantum Boltzmann for transport 
processes in Fermi/Bose gases, generalized (active particles) Boltzmann for epidemics and virus mutations, etc.
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Fig. 10. Test case from section 6.2: Results for 2-D lid-driven cavity flow at steady-state. In each of the plot, white lines indicate the results from DSMC 
simulations; whereas the background contour is from DG methods. The left column illustrates the results from conventional DG formulation for Boltzmann 
equation, whereas the right column shows the results from entropy-stable DG formulation for Boltzmann equation.
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Fig. 11. Test case from section 6.2: Results for 2-D lid-driven cavity flow at different time instants. In each of the plot, white lines indicate the results from 
conventional DG formulation for Boltzmann equation, whereas the background contour is from entropy-stable DG formulation for Boltzmann equation. The 
left column shows results at t = 2, whereas the right column shows results at t = 4.
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